Supporting materials

Enhanced gas sensing performance of perovskite YFe_{1-x}Mn_xO₃ by

doping manganese ions

Aerzigu Xukeer,^a Zhaofeng Wu,^a* Qihua Sun,^a Furu Zhong,^b Min Zhang^a, Mengqiu Long,^c Haiming Duan^a*

^a School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang

830046, P. R. China

^b School of Physics and Electronic Science, Zunyi Normal College, Zunyi, 563006,

Guizhou, P. R. China

^c Institute of Super-microstructure and Ultrafast Process in Advanced Materials,

School of Physics and Electronics, Central South University, Changsha 410083, P.

R. China

E-mail: wuzf@xju.edu.cn (Z. Wu), dhm@xju.edu.cn (H. Duan)

Fig. S1. Lattice parameters (a) a, (b) b, (c) c, of YFe_{1-x}Mn_xO₃ materials as a function

of x in YFe_{1-x}Mn_xO₃.

Fig. S2. Original SEM image selected for the EDS mapping.

Fig. S3. (a) UV-vis diffuse reflectance spectra (DRS), (b) the plot of transformed Kubelka-Munk function versus the energy of light.

Fig. S4. Mn2p and its Gaussian fitting for (a) $YFe_{0.975}Mn_{0.025}O_3$ (S2), (b) $YFe_{0.925}Mn_{0.075}O_3$ (S4), (c) $YFe_{0.9}Mn_{0.1}O_3$ (S5).

Fig. S5. Fe2p and its Gaussian fitting for (a) YFeO₃ (S1), (b) YFe_{0.975}Mn_{0.025}O₃ (S2),

(c) $YFe_{0.925}Mn_{0.075}O_3$ (S4), (d) $YFe_{0.9}Mn_{0.1}O_3$ (S5).

Fig. S6. O1s peaks together with Gaussian fitting for (a) YFeO₃ (S1), (b) $YFe_{0.975}Mn_{0.025}O_3$ (S2), (c) $YFe_{0.925}Mn_{0.075}O_3$ (S4), (d) $YFe_{0.9}Mn_{0.1}O_3$ (S5).

Fig. S7. (a) the average response, (b) response time (c) recovery time of five sensors based on $YFe_{1-x}Mn_xO_3$ to 1000 ppm of CH_2O , C_2H_6O and H_2O_2 vapor and 100% RH.