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Here we present all the details pertaining the interaction model, the simulation details 

and additional simulation results.

1. The dissipative particle dynamics (DPD) model

DPD is a particle-based technique [1, 2] which is closely related to standard molecular 

dynamics [3] in the sense that the equation of motion must be integrated using finite 

time steps for a number of particles, until equilibrium is achieved for sufficiently long 

time. What is specific to DPD is the short-range nature of its forces, which are central 
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and pairwise additive, yielding moment – conserving simulations. Three types of forces 

make up the DPD model, namely a non-bonding conservative force, a dissipative force, 

and a random force given by the following expressions, respectively:

(ESI.1)
𝐹𝐶

𝑖𝑗 =  { 𝑎𝑖𝑗(1 ‒ 𝑟𝑖𝑗)�̂�𝑖𝑗         𝑟𝑖𝑗 ≤ 𝑟𝑐
 0                                 𝑟𝑖𝑗 >  𝑟𝑐�

(ESI.2)𝐹𝐷
𝑖𝑗 =  ‒ 𝛾𝜔𝐷(𝑟𝑖𝑗)[�̂�𝑖𝑗 ∙  𝑣𝑖𝑗]�̂�𝑖𝑗

(ESI.3)𝐹𝑅
𝑖𝑗 =  𝜎𝜔𝑅(𝑟𝑖𝑗)𝜉𝑖𝑗�̂�𝑖𝑗

In the equations above rij = ri − rj, rij = |rij|,  = rij/rij, rij is the magnitude of the relative �̂�𝑖𝑗

position between particles i and j, and  is the intensity of the repulsion between a pair 𝑎𝑖𝑗

of particles. The constant  is the coefficient of the viscous force, and  is the amplitude 𝛾  𝜎

of the random force; vij = vi − vj is the relative velocity between the particles i and j; 

 is a random number uniformly distributed between 0 and 1 with Gaussian 𝜉𝑖𝑗 =  𝜉𝑗𝑖

distribution and unit variance. The weight functions  and  in equations ESI.2 and 𝜔𝐷 𝜔𝑅

ESI.3 carry the spatial dependence of those forces and are given by the following 

expressions: 

(ESI.4)
𝜔𝐷(𝑟𝑖𝑗) = [𝜔𝑅(𝑟𝑖𝑗)]2 = 𝑚𝑎𝑥{(1 ‒

𝑟𝑖𝑗

𝑟𝑐
)2 , 0}

where rc is a cut-off distance. At interparticle distances larger than rc, all forces are 

equal to zero. This simple distance dependence of the forces allows one to use relatively 

large integration time steps. The strengths of the dissipative and random forces are 

related by the dissipation-fluctuation theorem [2], keeping the temperature ( ) internally 𝑇

fixed,  is Boltzmann’s constant.
𝑘𝐵𝑇 =

𝜎2

2𝛾
;𝑘𝐵

Polymer molecules are modeled as linear chains made of beads connected by freely 

rotating harmonic springs given by Hooke´s law:

 . (ESI.5)𝐹𝑆
𝑖𝑗 =‒ 𝑘𝑠(𝑟𝑖𝑗 ‒ 𝑟0)�̂�𝑖𝑗
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The spring constant in all cases modeled in this work is set as  and the 𝑘𝑠 = 100

equilibrium distance at  [4]. The surface on which the polymer chains are 𝑟0 = 0.7

grafted, and the flat tip of the atomic force microscope (AFM) that compresses the 

chains are both modeled by a simple, linearly decaying force law [5, 6]:

. (ESI.6)
𝐹𝑤(𝑧𝑖) =  { 𝑎𝑤(1 ‒ 𝑧𝑖 𝑧𝐶)�̂�         𝑧𝑖 ≤ 𝑧𝑐

 0                                    𝑧𝑖 >  𝑧𝑐�
The value of the cutoff distance along the z-axis,  is chosen as 1, and  is the 𝑧𝐶 𝑎𝑤

intensity of the wall – fluid interaction. The component along the z-axis of the position 

of the i-particle (solvent bead or polymer bead) is labeled  and for distances larger than 𝑧𝑖

, the wall force is zero. To model the tip of the AFM, the value of  in equation 𝑧𝐶 𝑎𝑤

(ESI.6) was always kept equal to . To model an increasingly stiff 𝑎𝑤 = 300(𝑘𝐵𝑇 𝑟𝑐)

surface on which the polymer brush is grafted,  was increased from  𝑎𝑤 𝑎𝑤 = 150(𝑘𝐵𝑇 𝑟𝑐)

to . 𝑎𝑤 = 400(𝑘𝐵𝑇 𝑟𝑐)

2. Simulation Protocol and Details

All simulations were performed using a hybrid DPD – Monte Carlo algorithm [5], so 

that the simulations could be performed in the grand canonical ensemble, where the 

chemical potential of the solvent is fixed, as well as the volume of the cell and the 

temperature. This is necessary to ensure that the system remains in chemical 

equilibrium when it is compressed, to produce force profiles. Failure to do so (keeping 

the chemical potential constant) results in erroneous values of the pressure between the 

surfaces [7, 8]. Full details about the hybrid DPD-Monte Carlo algorithm have been 

published elsewhere [5]. 

For the calculation of the force that the tip of the AFM exerts on the surface covered 

with a brush we use the solvation pressure [9]. It is defined as 

, (ESI.7)Π(ℎ) =  𝑃𝑧𝑧(ℎ) ‒ 𝑃𝐵
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where  is the component of the pressure tensor along the direction of compression 𝑃𝑧𝑧(ℎ)

(z-axis), i. e., is the pressure exerted on the surfaces that confine the complex DPD fluid 

made up of polymer chains and solvent monomers. The bulk pressure, , is obtained 𝑃𝐵

from the average value of the diagonal components of the pressure tensor when the 

brush is not compressed. The components of the pressure tensor are calculated using the 

virial theorem route [3], which provides kinetic and “potential” contributions to the 

pressure tensor. These components of the pressure tensor were calculated following the 

model of Irving and Kirkwood [10], given as follows: 

𝑃𝑥𝑥 = ∑
𝑖

𝑚𝑖�⃗�𝑖 ∙ �⃗�𝑖 + ∑
𝑖
∑
𝑗 > 𝑖

𝐹 𝐶
𝑖𝑗𝑥𝑥𝑖𝑗                                         (𝐸𝑆𝐼.8)

where the first sum is the kinetic contribution. The second term is the product of the x – 

component of the conservative DPD force acting between particles i and j, and the x – 

component of the rij vector. The pressure tensor components Pyy and Pzz are obtained by 

replacing y and z by x in equation (ESI.8), respectively. Figure ESI.1 shows a schematic 

representation of the simulation setup. 

Fig. ESI.1. Illustration of the simulation setup. The surface whose stiffness is increased 
is shown on the left; the tip of the AFM is on the right. Polymer chains (in green) are 
grafted to the surface by physical adsorption of the beads at one end of the chains to the 
surface. For simplicity, all chains shown have the same length. In the simulations we 
used three values of the length: N1=5 beads, N2=30 beads and N3=42 beads. The solvent 
beads are represented by blue circles.
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We use reduced units throughout this work, where all masses are taken as  and 𝑚 = 1.0

the cutoff radius is . The values chosen for the constants in the random and 𝑟𝐶 = 1.0

dissipative forces, σ=3 and γ=4.5, yield  and the time step used to integrate 𝑘𝐵𝑇 = 1

discreetly the equation of motion is set at . The parameter of the non-bonding 𝛿𝑡 = 0.03

conservative DPD force between two beads,  in equation ESI.1, is taken from a 𝑎𝑖𝑗

previous report [11] equal to  for particles of the same type (solvent-𝑎𝑖𝑖 = 78.0(𝑘𝐵𝑇 𝑟𝑐)

solvent, polymer bead-polymer bead). For the interaction between solvent particles and 

the beads that make up the polymer chains, . The interaction between 𝑎𝑖𝑗 = 79.3(𝑘𝐵𝑇 𝑟𝑐)

the beads (solvent or polymer bead) and the surface of increasing hardness (  in 𝑎𝑤

equation ESI.6) was set at . To physically adsorb the chains’ end-bead 𝑎𝑤 = 140(𝑘𝐵𝑇 𝑟𝑐)

to this surface, a less repulsive wall force was used: ; this produces an 𝑎𝑤 = 60(𝑘𝐵𝑇 𝑟𝑐)

effective attraction between the end-beads of the chains and their grafting surface. The 

intensity of the force coming from the tip of the AFM was fixed at  for 𝑎𝑤 = 300(𝑘𝐵𝑇 𝑟𝑐)

all types of beads in the system. Following previous works [11, 12] the brush is made 

up of chains of three polymerization degrees: ,  and . For the 𝑁1 = 5 𝑁2 = 30 𝑁3 = 42

shortest polymers ( ) there are 36 chains in the simulation box, with 10 chains of the 𝑁1

medium size chains ( ) and 4 of the longest chains ( ). When the physical dimensions 𝑁2 𝑁3

of the grafting surface are used, these values correspond to grafting densities equal to 

 nm-2,  nm-2 and  nm-2.Γ1 = 1.76 Γ2 = 0.49 Γ3 = 0.20

The area of the simulation box was fixed in all cases with Lx/rc= 7, Ly/rc = 7, while Lz/rc 

was increased from 4.5 up to 15; periodic boundary conditions were used, except in the 

z-direction since this is the direction of the confinement. The chemical potential was 

fixed at µ=37.7kBT, which gives a total average numerical density of <>~3/rc
3. The 

simulation results were obtained from averages after at least 50 blocks of 104 Monte 
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Carlo configurations each were carried out, with the first 25 blocks used to equilibrate 

the system and the rest were used for the production phase. 

3. Additional results

In Fig. ESI.2 we show the concentration profiles of the solvent monomers only in the 

high compression regime. The global concentration is equal to 3, which means that 

there are very few solvent particles in the system when the compression is high, yet they 

do penetrate the brush. Another salient feature is that the hardest the surface becomes 

(increasing aw), the least solvent beads there are. The surface appears to “push” the 

beads to the outer end of the brush, close to the AFM tip. 
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Fig. ESI.2. Concentration profile of the solvent beads only under high compression, 
when the stiffness parameter of the grafting surface is increased. The grafting surface is 
on the left y-axis while the tip of the AFM is on the right.

In Fig. ESI.3 we show the concentration profiles of the brush beads only, for the weak 

compression regime. It is of notice that in only one case can we find a structuring of the 

brush beads near the surface of the AFM tip (y-axis on the right), corresponding to 
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aw=300. The reason for this is quite simple: that value of the grafting surface stiffness 

(placed on the left y-axis) is equal to the intensity of the force parameter of the AFM tip, 

therefore the brush beads nearest the tip are locally attracted to such surface.
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Fig. ESI.3. Concentration profile of the brush beads only as the stiffness parameter of 
the grafting surface is increased, under weak compression. The grafting surface is on the 
left y-axis while the tip of the AFM is on the right.

Lastly, we comment on the dependence of the total force exerted on the grafting surface 

and the brush by the AFM tip when the stiffness of the former is increased. In Fig. 

ESI.4 one can find the  for increasing values of the grafting surface stiffness 𝐹 𝑅

parameter, , at a fixed distance between both surfaces, , where  is the average 𝑎𝑤 ℎ 𝐿 = 1.4 𝐿

thickness of the nonuniform brush, made up of chains of three different lengths and 

grafting densities. This distance corresponds to the weak compression regime (see Fig. 

4(b) in the main manuscript). The data (blue circles in Fig. ESI.4) follow reasonably 

well the expression

. (ESI.9)

𝐹
𝑅

= 𝛽(𝑎𝑤)
1
3
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In the equation above  is a fitting parameter. This figure clearly shows that our 𝛽

simulations pick up separately the contributions to the force arising from the surface and 

from the brush. That can be ascertained by recalling from the discussion in the main 

manuscript that the brush mechanical response to compression can be appropriately 

represented by the Alexander – de Gennes expression [9]:

, (ESI.10)
𝐹
𝑅

= 𝑏𝑒 ‒ 2𝜋(ℎ 𝐿)

where b is a constant that depends only on the properties of the brush, . 𝑏 = 100Γ3 2𝑘𝐵𝑇𝐿

The fit of equation ESI.10 to the data in Fig. 4 of the manuscript is good, proving that 

such equation reproduces the force-compression profiles. Yet, there is no contribution 

from the surface stiffness in equation ESI.10. By fixing the distance between the 

surfaces (  in Fig. ESI.4), the properties of the brush are fixed, regardless the ℎ 𝐿 = 1.4

value of the stiffness constant, which leads to the conclusion that the trend shown in 

Fig. ESI.4 is due entirely to the increasing stiffness of the surface.
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Fig. ESI.4. Dependence of the force on the brush with increasing stiffness of the surface 
on with the brush is grafted. The red line represents the best fit to the function , 𝛽𝑎1 3

𝑤

with . The scales on the axes are in reduced DPD units.𝛽 = 0.563

The results shown in Fig. ESI.4 lead us to postulate that the force applied by the AFM 

on a surface covered by a nonuniform polymer brush has two uncoupled contributions, 

namely the brush force, given by equation ESI.10, and the surface force, given by . 𝛽𝑎1 3
𝑤

Therefore, latter contribution must be proportional to Young’s modulus, . 𝐸(𝑎𝑤) ∝ 𝛽𝑎1 3
𝑤

This would explain where the ratio , reported in the main 𝑟 = 𝐹(ℎ 𝐿)𝑚𝑎𝑥 𝐹(ℎ 𝐿)𝑚𝑖𝑛

manuscript, comes from. We obtained  in the high compression range and 𝑟 = 1.32

 in the weak compression range, while 𝑟 = 1.36

, which is close to value of .𝐸(𝑎𝑤 = 400) 𝐸(𝑎𝑤 = 150) = (400 150)1 3≅1.38 𝑟
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