## **ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)**

# Comprehensive *in silico* modeling of plant PRR Xa21 and its interaction with RaxX21-sY and OsSERK2

M H M Mubassir, \*<sup>a</sup> M Abu Naser,<sup>b</sup> Mohd Firdaus Abdul-Wahab,<sup>b</sup> Tanvir Jawad,<sup>a</sup> Raghib Ishraq Alvy<sup>a</sup> and Salehhuddin Hamdan \*<sup>b</sup>





Fig. S1 Multiple sequence alignment (MSA) of Xa21 protein sequence and top five BLASTP results for (a) Full sequence 1-1025 (b) LRR templates (c) JM and Kinase templates

| Sequence MI S L P L I<br>Secondary<br>structure                                                               | LLFVLLFSALLLCPSSSDDDGDAAGDELALLSFK S                   | SLLYQGGQSLASWNTSGHG                | Sequence S V Y K G K L NI Q D H V A V K V L K L<br>Secondary<br>structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENPKALKSFTAECEALRNNR HRNLVK             | IVTICSSIDNRGND            |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|
| SS<br>confidence<br>Disorder ? ?<br>Disorder<br>confidence<br>Conserved<br>Domain<br>info                     |                                                        | _1 _2 , , , 2 _2 , 2 , 2 ,         | confisence<br>Disorder<br>confisence<br>Domain<br>Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | · · · · ·                 |
| Sequence QHCTWV                                                                                               | SVVCGRRRRHPHRVVKLLLRSSNLSGI SPSLGN                     |                                    | Sequence F K A I V Y DF MP N G S L E D WI HP<br>Secondary<br>structure<br>SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ETNDQADORHLNLHRRVTILLDVACA              |                           |
| confidence<br>Disorder<br>Confidence<br>Conserved<br>Domain                                                   |                                                        | - ? ? ? ?                          | confidence<br>Disorder ?<br>Confidence<br>Conserved<br>Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,,,,,,,,,,,                             |                           |
| Sequence PELSRLS<br>Secondary<br>structure                                                                    | SREQUEES DNSI OGSI PAAI GACT KLTSEDES H N              | OLRGMIPREIGASLKHLSN                | Sequence CDI KSSNVLLDSDMVAHVGD<br>Secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FGLARILVDGTSLIQOSTSS MGFIGT             | I GYA APEYGVGLIA          |
| Confidence<br>Disorder<br>Disorder<br>Confidence<br>Conserved<br>Domain                                       | II                                                     | -?                                 | Lonikence<br>Disorder<br>confidence<br>Conserved<br>Domain<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                           |
| Sequence L Y L Y K N<br>Secondary<br>structure                                                                | SLSGEIPSALGNUTSLOEFDLSFNRLSGAIPSSLG                    | QUSSLUT MN L GQNNLSONI             | Sequence STHGDI YSYGI LVLEI VTCK<br>Secondary<br>structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RPTDSTFRPDLGLRQVVELGLHGRVT              | DVVDTKLILDSENW<br>MAAAAAA |
| confidence<br>Disorder<br>Confidence<br>Confidence<br>Conserved<br>Domain                                     | ->                                                     | ???                                | Confidence<br>Disorder 7 7 7 7<br>Disorder Confidence<br>Conserved<br>Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11111                                   | 77777                     |
| Sequence P N S I WN<br>Secondary<br>structure                                                                 |                                                        | TNRFHGKI PASVANASHLT               | Secuence L N ST N N SP C R R I T E C I V WL L<br>Secondary<br>structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RLGLSCSQELPSSRTPTGDIIDELNA              | I KONLSGLFPVCEG           |
| 55<br>confidence<br>Disorder<br>Confidence<br>Conserved<br>Domain                                             |                                                        |                                    | confidence<br>Disorder<br>cantisence<br>Conserved<br>Domain<br>ivic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77 7 7                                  | 7777                      |
| Sequence<br>Secondary<br>structure                                                                            | NLFSGIITSGFGRLRNLTELYLWRNLFQTREQDDW                    | VGFISDLTNCSKLQTLNLGE               | Sequence GSLEF<br>Secondary<br>structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                           |
| SS<br>confidence<br>Disorder<br>confidence<br>Conserved<br>Domain                                             | , _,, _,, _, _, _, , , , , , ,                         | -111-1                             | Confidence<br>Disorder<br>confidence<br>Coriserved<br>Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                           |
| Info<br>Secondary<br>structure<br>Disorder<br>Disorder<br>Conserved                                           | IPNSPSNLSTSLSFLALELNKI TÖSI PKDIGNLI G                 | LQHLÝLĊNŰNFRÖŠĽPSŠŰ<br>AMA<br>1 -1 | High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9)<br>High(9 | sinding site Low (0)<br>()<br>9)<br>(x) |                           |
| Secondary<br>Structure<br>Structure<br>Disorder<br>Conserved<br>Domain                                        | GILLAYENNUS GSI PLAI GNLTEL NI LLIGTNK K<br>           | GWIPYTLSWLTNLISLGIS                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                           |
| info<br>Secondary<br>structure<br>55<br>contidence<br>Disorder<br>Conserved                                   | רו איז             | NLVÉFHAES NRLSÖKI PNŤ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                           |
| Domain<br>Info<br>Secondary<br>Secondary<br>Structure<br>Disorder<br>Disorder<br>Confidence                   |                                                        | 5601 PTSLÄDI TMLHSLNE<br>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                           |
| Conserved<br>Domain<br>Info<br>Secondary<br>structure<br>Ss<br>confidence<br>Disorder<br>Disorder<br>Disorder | SEVPTI GAFAAAS GI SI OGNAKLÖGGI PDLHLPR C<br>AAAAA<br> | CPLLENRK#FPVLPISVSL<br>4444444     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                           |
| Conserved<br>Domain<br>info<br>Sequence AAAALALI<br>Secondary<br>structure<br>Sconfidence                     | SI VILITWIK RTKK GAPSRTSMKGHPLVSY SOL                  | VKATDGFAPTNLLGSGSFG                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                           |
| Disorder<br>Disorder<br>Confidence<br>Conserved<br>Domain<br>info                                             |                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                           |

Fig. S2 Secondary structure of Xa21 protein predicted by PSIPRED











**Fig. S3** (a) Conserved region prediction of Xa21 by the ConSurf tool. (b) Domain boundary prediction of Xa21 using InterPro. (c) Domain boundary prediction of Xa21 by the SMART tool. (d) Repeated Xa21 LRR region prediction by the HHrepID tool. (e) Transmembrane region prediction of Xa21 protein by the TMHMM tool.



Fig. S4 Cartoon representations of the Xa21 proteins modeled using single template modeling approaches. Red colored regions indicate alpha helixes, yellow colored regions indicate beta sheets and green colored regions indicate coiled regions.



**Fig. S5.** Cartoon representations of the Xa21 protein modeled using multiple template modeling approaches. The boxed proteins are 3D structures of the best template from the PDB - (a) LRR domain, (b) TM domain, (c) Kinase domain, of Xa21. Red colored regions indicate alpha helixes, yellow colored regions indicate beta sheets and green colored regions indicate coil regions.



Fig. S6. Ramachandran plot summery for Xa21 protein modeled by the HHpred server is on the right-hand side and the left-hand side figure indicates the MolProbity for the Ramachandran plot.



**Fig. S7.** (a) Cartoon representation of the Xa21 protein modeled by the Swiss-model tool showing the different gaps in the structure. (b) Alignment of the modeled protein sequence and the template sequence by Swiss-model. (c) Cartoon representation of LRR domain modeled by the HHpred server. Red colored regions indicate alpha helix, yellow colored regions indicate beta sheet and green colored regions indicate coil region.

Table S1A. Modeling methodology of the Xa21 Protein using Single Template Modeling approach

| Tool          | Modeling Method | Template |
|---------------|-----------------|----------|
| Modeller 9.15 | Homology        | 4mn8A    |
| 3D-JIGSAW     | Homology        | 4mn8A    |
| CPHmodel 3.2  | Homology        | 4mn8A    |
| Geno3D        | Homology        | 4mn8A    |
| Swissmodel    | Homology        | 4mn8A    |
| PRC           | Threading       | 4mn8A    |
| pGenTHREADER  | Threading       | 4mn8A    |
| Prospect2     | Threading       | 4mn8A    |
| FFAS-3D       | Threading       | 4mn8A    |
| FFAS03        | Threading       | 4mn8A    |
| SP3           | Threading       | 4mn8A    |
| Sparks-X      | Threading       | 4mn8A    |
| Musterm       | Threading       | 4mn8A    |
| WdPPAS        | Threading       | 4j0mA    |

Table S1B. Modeling methodology of the Xa21 Protein using Multiple Template Modeling Approach

| R/P ID     | R/P Name   | AA       | Tool   | Modeling | Template(s)                   |
|------------|------------|----------|--------|----------|-------------------------------|
|            |            | boundary |        | Method   |                               |
| Xa21lrr_1  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A                         |
| Xa21lrr_2  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4j0mA                   |
| Xa21lrr_3  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+3rgzA                   |
| Xa21lrr_4  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+1ogqA                   |
| Xa21lrr_5  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4j0mA+1ogqA             |
| Xa21lrr_6  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+1ogqA+3rgzA             |
| Xa21lrr_7  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+3rgzA+4j0mA             |
| Xa21lrr_8  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+1ogqA+4j0mA+3rgzA       |
| Xa21lrr_9  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4u08A                   |
| Xa21lrr_10 | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4u08A+3rgzA             |
| Xa21lrr_11 | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4u08A+4j0mA             |
| Xa21lrr_12 | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4u08A+1ogqA             |
| Xa21lrr_13 | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4u08A+3rgzA+4j0mA       |
| Xa21lrr_14 | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4u08A+4j0mA+1ogqA       |
| Xa21lrr_15 | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4u08A+4j0mA+3rgzA+1ogqA |
| Xa21lrr_16 | N-term+LRR | 27-634   | HHpred | Homology | 4u08A+3rgzA                   |
| Xa21lrr_17 | N-term+LRR | 27-634   | HHpred | Homology | 4u08A+4j0mA                   |
| Xa21lrr_18 | N-term+LRR | 27-634   | HHpred | Homology | 4u08A+1ogqA                   |
| Xa21lrr_19 | N-term+LRR | 27-634   | HHpred | Homology | 3rgzA+4j0mA                   |
| Xa21lrr_20 | N-term+LRR | 27-634   | HHpred | Homology | 3rgzA+1ogqA                   |
| Xa21lrr_21 | N-term+LRR | 27-634   | HHpred | Homology | 4j0mA+1ogqA                   |
| Xa21lrr_22 | N-term+LRR | 27-634   | HHpred | Homology | 4u08A+3rgzA+4j0mA             |
| Xa21lrr_23 | N-term+LRR | 27-634   | HHpred | Homology | 4u08A+3rgzA+1ogqA             |
| Xa21lrr_24 | N-term+LRR | 27-634   | HHpred | Homology | 4u08A+4j0mA+1ogqA             |
| Xa21lrr_25 | N-term+LRR | 27-634   | HHpred | Homology | 3rgzA+4j0mA+1ogqA             |

| Xa21lrr_26  | N-term+LRR | 27-634   | HHpred | Homology | 4u08A+3rgzA+4j0mA+1ogqA |
|-------------|------------|----------|--------|----------|-------------------------|
| Xa21lrr_27  | N-term+LRR | 27-634   | HHpred | Homology | 3rgzA                   |
| Xa21lrr_28  | N-term+LRR | 27-634   | HHpred | Homology | 4j0mA                   |
| Xa21lrr_29  | N-term+LRR | 27-634   | HHpred | Homology | 1ogqA                   |
| Xa21lrr_30  | N-term+LRR | 27-634   | HHpred | Homology | 4u08A                   |
| Xa21lrr_31  | N-term+LRR | 27-634   | HHpred | Homology | 4mn8A+4u08A+3rgzA+1ogqA |
| Xa21c12tm_1 | TM+c1+c2   | 651-707  | HHpred | Homology | 2jwaA                   |
| Xa21c12tm_2 | TM+c1+c2   | 651-707  | HHpred | Homology | 2ks1B                   |
| Xa21c12tm_3 | TM+c1+c2   | 651-707  | HHpred | Homology | 2jwaA+2ks1B             |
|             | JM+K+C-    |          |        |          |                         |
| Xa21k_1     | term       | 708-1004 | HHpred | Homology | 4oh4A                   |
|             | JM+K+C-    |          |        |          |                         |
| Xa21k_2     | term       | 708-1004 | HHpred | Homology | 3uimA                   |
|             | JM+K+C-    |          |        |          |                         |
| Xa21k_3     | term       | 708-1004 | HHpred | Homology | 4l68A                   |
|             | JM+K+C-    |          |        |          |                         |
| Xa21k_4     | term       | 708-1004 | HHpred | Homology | 2nruA                   |
|             | JM+K+C-    |          |        |          |                         |
| Xa21k_5     | term       | 708-1004 | HHpred | Homology | 2qkwB                   |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_6     | term       | 708-1004 | HHpred | Homology | 4oh4A+3uimA             |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_7     | term       | 708-1004 | HHpred | Homology | 4oh4A+4l68A             |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_8     | term       | 708-1004 | HHpred | Homology | 4oh4A+2nruA             |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_9     | term       | 708-1004 | HHpred | Homology | 4oh4A+2qkwB             |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_10    | term       | 708-1004 | HHpred | Homology | 3uimA+4l68A             |
|             | JM+K+C-    |          |        |          |                         |
| Xa21k_11    | term       | 708-1004 | HHpred | Homology | 3uimA+2nruA             |
|             | JM+K+C-    |          |        |          |                         |
| Xa21k_12    | term       | 708-1004 | HHpred | Homology | 3uimA+2qkwB             |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_13    | term       | 708-1004 | HHpred | Homology | 4l68A+2nruA             |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_14    | term       | 708-1004 | HHpred | Homology | 4l68A+2qkwB             |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_15    | term       | 708-1004 | HHpred | Homology | 2nruA+2qkwB             |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_16    | term       | 708-1004 | HHpred | Homology | 40h4A+3uimA+4l68A       |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_17    | term       | 708-1004 | HHpred | Homology | 4oh4A+3uimA+2nruA       |
|             | IM+K+C-    |          |        |          |                         |
| Xa21k_18    | term       | 708-1004 | HHpred | Homology | 4oh4A+3uimA+2qkwB       |
| Xa21k 19    | JM+K+C-    | 708-1004 | HHpred | Homology | 3uimA+4l68A+2nruA       |
| ······      | ···· · · · |          |        |          |                         |

|            | term    |           |                 |                |                                              |
|------------|---------|-----------|-----------------|----------------|----------------------------------------------|
| V-211-20   | JM+K+C- | 700 1004  | L I I I a na al | Lleve ele eu . | 2                                            |
| Xa21k_20   | term    | 708-1004  | HHpred          | Homology       | 3uimA+4l68A+2qkwB                            |
| ¥ 241 24   | JM+K+C- | 700 4004  |                 |                |                                              |
| Xa21K_21   | term    | 708-1004  | ннргеа          | Homology       | 4I68A+2NFUA+2qKWB                            |
| V-211 22   | JM+K+C- | 709 1004  | Illiprod        | Homology       | 40h44 : 2pm 4 : 2plu 0                       |
| XdZIK_ZZ   | term    | 708-1004  | ппргец          | пошоюду        | 40114A+2111UA+2QKWB                          |
| V-211 22   | JM+K+C- | 709 1004  | Hunrod          | Homology       | 2. um A. 169 A. Jakup                        |
| AdZIK_25   | term    | 708-1004  | ппргец          | пошоюду        | SuiiiiAt4i06At2ųkwb                          |
| X2216 21   | JM+K+C- | 708-1004  | HHpred          | Homology       | 2um A+2pru A+2phu/B                          |
| X021K_24   | term    | 708-1004  | mpreu           | Homology       | Sumarzinuarzykwo                             |
| Xa21k 25   | JM+K+C- | 708-1004  | HHpred          | Homology       | 40h44+4l684+2akwB                            |
| /dlin_Lo   | term    | ,00 100 1 | mpreu           | 101101057      |                                              |
| Xa21k 26   | JM+K+C- | 708-1004  | HHpred          | Homology       | 4oh4A+4l68A+2nruA+2akwB                      |
|            | term    |           |                 |                |                                              |
| Xa21k 27   | JM+K+C- | 708-1004  | HHpred          | Homology       | 4oh4A+3uimA+4l68A+2nruA                      |
| _          | term    |           | P               |                |                                              |
| Xa21k 28   | JM+K+C- | 708-1004  | HHpred          | Homology       | 3uimA+4l68A+2nruA+2gkwB                      |
| -          | term    |           | ·               | 0,             |                                              |
| Xa21k 29   | JM+K+C- | 708-1004  | HHpred          | Homology       | 4oh4A+4l68A+2nruA+2qkwB                      |
| -          | term    |           | ·               | 0,             |                                              |
| Xa21k_30   | JM+K+C- | 708-1004  | HHpred          | Homology       | 4oh4A+3uimA+4l68A+2nruA+2qkwB                |
|            | term    |           |                 |                |                                              |
| Xa21k_31   | JM+K+C- | 708-1004  | HHpred          | Homology       | 4oh4A+3uimA+2nruA+2qkwB                      |
|            | term    |           |                 |                |                                              |
| Xa21_Final | Xa21    | 27-1009   | HHpred          | Homology       | Xa21lrr_15+Xa21c12tm_3+Xa21k_1               |
| Xa21_AIDA  | Xa21    | 27-1009   | AIDA            | Homology       | 4mnA+2jwA+4l68A                              |
| Xa21 I-Tas | Xa21    | 1-1025    | I-Tasser        | Ab initio&     | 4mn8A(7)+4oa2A+4j0mA                         |
| -          |         |           |                 | Threading      |                                              |
| Xa21_Phyl  | Xa21    | 1-1025    | Phyre2          | Homology&Ab    | 4mn8A(2)+4y93A+2j0kB+1oplA+4xi2A+1y57A+2fo0A |
| _ ,        |         |           | Intensive       | initio         |                                              |
| Xa21_RapX  | Xa21    | 1-1025    | Raptor-X        | Threading      | 4mn8A+3tl8A+4oa2A+4oa6A                      |

R/P ID, Region or Protein ID; R/P Name, Region or protein Name; AA, Amino Acid; LRR, Leucine rich repeat; TM+C1+C2, Transmembrane and Charged 1 and Charged 2 region; JM+K+C-term, Juxtamembrane and Kinase and C terminal region.

| Region     | AA Boundary | PDB ID | Max.  | E-value  | Q C | Idn. (%) | Template Short Identity                                                                                                          |
|------------|-------------|--------|-------|----------|-----|----------|----------------------------------------------------------------------------------------------------------------------------------|
|            |             |        | Score |          | (%) |          |                                                                                                                                  |
|            |             | 4mn8_A | 311   | 4.00E-91 | 58  | 33       | Chain A, Crystal Structure Of Flg22<br>In Complex With The Fls2 And<br>Bak1 Ectodomains                                          |
|            |             | 4j0m_A | 206   | 3.00E-55 | 54  | 33       | Chain A, Crystal Structure Of Brl1<br>(Irr) In Complex With Brassinolide                                                         |
| Xa21 full  | 1-1025      | 3riz_A | 201   | 2.00E-53 | 54  | 33       | Chain A, Crystal Structure Of The<br>Plant Steroid Receptor Bri1<br>Ectodomain                                                   |
|            |             | 40a9_A | 169   | 1.00E-45 | 25  | 38       | Chain A, Crystal Structure Of The<br>Bri1 Kinase Domain (865-1160) In<br>Complex With Amppnp And Mn<br>From Arabidopsis Thaliana |
|            |             | 3uim_A | 129   | 8.00E-32 | 22  | 36       | Chain A, Structural Basis For The<br>Impact Of Phosphorylation On<br>Plant Receptor- Like Kinase Bak1<br>Activation              |
| Xa21       | 27-1009     | 4mn8_A | 312   | 1.00E-91 | 61  | 33       | Chain A, Crystal Structure Of Flg22<br>In Complex With The Fls2 And<br>Bak1 Ectodomains                                          |
|            |             | 4j0m_A | 206   | 1.00E-55 | 57  | 33       | Chain A, Crystal Structure Of Brl1<br>(Irr) In Complex With Brassinolide                                                         |
|            |             | 3riz_A | 201   | 9.00E-54 | 57  | 33       | Chain A, Crystal Structure Of The<br>Plant Steroid Receptor Bri1<br>Ectodomain                                                   |
|            |             | 40a9_A | 169   | 8.00E-46 | 26  | 38       | Chain A, Crystal Structure Of The<br>Bri1 Kinase Domain (865-1160) In<br>Complex With Amppnp And Mn<br>From Arabidopsis Thaliana |
|            |             | 3uim_A | 129   | 7.00E-32 | 23  | 36       | Chain A, Structural Basis For The<br>Impact Of Phosphorylation On<br>Plant Receptor- Like Kinase Bak1<br>Activation              |
| N-term+LRR | 27-634      | 4mn8_A | 312   | 4.00E-95 | 98  | 33       | Chain A, Crystal Structure Of Flg22<br>In Complex With The Fls2 And<br>Bak1 Ectodomains                                          |
|            |             | 3riz_A | 212   | 7.00E-59 | 91  | 32       | Chain A, Crystal Structure Of The                                                                                                |

|               |          |        |      |          |    |    | Plant Steroid Receptor Bri1<br>Ectodomain                                                                                                       |
|---------------|----------|--------|------|----------|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------|
|               |          | 4j0m_A | 207  | 3.00E-57 | 92 | 33 | Chain A, Crystal Structure Of Brl1<br>(Irr) In Complex With Brassinolide                                                                        |
|               |          | logq_A | 105  | 2.00E-24 | 98 | 32 | Chain A, The Crystal Structure Of<br>Pgip (Polygalacturonase Inhibiting<br>Protein), A Leucine Rich Repeat<br>Protein Involved In Plant Defense |
|               |          | 4u08_A | 103  | 2.00E-23 | 67 | 29 | Chain A, Structure Of<br>LeptospiraInterrogansLrr Protein<br>Lic11098                                                                           |
|               |          | 4oh4_A | 166  | 7.00E-47 | 69 | 38 | Chain A, Crystal Structure Of Bri1<br>In Complex With Bki1                                                                                      |
| C1+TM+C2+JM+K |          | 3uim_A | 130  | 7.00E-34 | 60 | 36 | Chain A, Structural Basis For The<br>Impact Of Phosphorylation On<br>Plant Receptor- Like Kinase Bak1<br>Activation                             |
|               | 635-1009 | 4168_A | 108  | 2.00E-26 | 88 | 28 | Chain A, Structure Of The<br>Psedudokinase Domain Of Bir2,<br>An Immune Regulator Of The<br>Rlk/pelle Family                                    |
|               |          | 2nru_A | 107  | 5.00E-26 | 63 | 34 | Chain A, Crystal Structure Of Irak-<br>4                                                                                                        |
|               |          | 2qkw_B | 99.4 | 3.00E-23 | 69 | 31 | Chain B, Structural Basis For<br>Activation Of Plant Immunity By<br>Bacterial Effector Protein Avrpto                                           |
|               |          | 4oh4_A | 166  | 2.00E-47 | 79 | 38 | Chain A, Crystal Structure Of Bri1<br>In Complex With Bki1                                                                                      |
| JM+K+C-term   | 683-1009 | 3uim_A | 130  | 3.00E-34 | 69 | 35 | Chain A, Structural Basis For The<br>Impact Of Phosphorylation On<br>Plant Receptor- Like Kinase Bak1<br>Activation                             |
|               |          | 4168_A | 108  | 2.00E-26 | 99 | 28 | Chain A, Structure Of The<br>Psedudokinase Domain Of Bir2,<br>An Immune Regulator Of The<br>Rlk/pelle Family                                    |
|               |          | 2nru_A | 107  | 2.00E-26 | 72 | 34 | Chain A, Crystal Structure Of Irak-<br>4                                                                                                        |
|               |          | 2qkw_B | 99.4 | 1.00E-23 | 79 | 31 | Chain B, Structural Basis For                                                                                                                   |

|  |  |  | Activation Of Plant Immunity By   |
|--|--|--|-----------------------------------|
|  |  |  | Bacterial Effector Protein Avrpto |
|  |  |  |                                   |

AA, Amino Acid; Max. Score, Maximum Score; Q C, Query Coverage; Idn., Identity; N-term, N terminal region; LRR, Leucine Rich Repeat; C1, Charged1; TM, Transmembrane; C2, Charged2; JM, Juxtamembrane; K, Kinase; C-term, C terminal.

Table S2B. HHpred analysis of Charged1, Transmembrane and Charged2 regions of the Xa21 protein

| Region   | AA Boundary | PDB ID | Score | E-value | P-value  | Probability (%) | Template Short                                 |
|----------|-------------|--------|-------|---------|----------|-----------------|------------------------------------------------|
|          |             |        |       |         |          |                 | Identity                                       |
| C1+TM+C2 | 635-682     | 2jwa_A | 30.7  | 0.0024  | 6.70E-08 | 96.1            | Receptor tyrosine-<br>protein kinase<br>ERBB-2 |
|          |             | 2ks1_B | 27.8  | 0.016   | 4.30E-07 | 95.1            | Epidermal growth factor receptor               |

AA, Amino Acid; C1, Charged1 region; TM, Transmembrane region; C2, Charged 2 region.

| Table S3. Predictions of the Leucine rich re | peat (LRR) domain and domain bour | dary using different tools |
|----------------------------------------------|-----------------------------------|----------------------------|
|----------------------------------------------|-----------------------------------|----------------------------|

| Domain | Song et al 199 | 96     | HHrepID  |        | Irrfinder.com |        | SMART    |        |
|--------|----------------|--------|----------|--------|---------------|--------|----------|--------|
| Name   | Start AA       | End AA | Start AA | End AA | Start AA      | End AA | Start AA | End AA |
| LRR1   | 81             | 98     | 79       | 101    | 104           | 127    | 102      | 125    |
| LRR2   | 99             | 122    | 102      | 125    | 128           | 151    | 126      | 150    |
| LRR3   | 123            | 146    | 126      | 149    | 152           | 176    | 151      | 174    |
| LRR4   | 147            | 170    | 150      | 172    | 177           | 200    | 199      | 223    |
| LRR5   | 172            | 195    | 175      | 198    | 201           | 224    | 247      | 271    |
| LRR6   | 196            | 219    | 199      | 222    | 225           | 248    | 320      | 343    |
| LRR7   | 220            | 243    | 223      | 246    | 249*          | 273*   | 350      | 373    |
| LRR8   | 244            | 267    | 247      | 268    | 274           | 321    | 399      | 423    |
| LRR9   | 269            | 292    | 272      | 295    | 322           | 351    | 447      | 470    |
| LRR10  | 293            | 316    | 296      | 319    | 352           | 376    | 471      | 495    |
| LRR11  | 317            | 340    | 320      | 342    | 377           | 400    | 520      | 544    |
| LRR12  | 347            | 370    | 350      | 373    | 401           | 448    | 568      | 591    |
| LRR13  | 372            | 395    | 376      | 398    | 449*          | 472*   |          |        |
| LRR14  | 396            | 419    | 399      | 422    | 473*          | 545*   |          |        |
| LRR15  | 420            | 443    | 423      | 446    | 546           | 569    |          |        |
| LRR16  | 444            | 467    | 447      | 470    | 570           | 593    |          |        |
| LRR17  | 468            | 491    | 471      | 494    | 594**         | 1025** |          |        |
| LRR18  | 492            | 516    | 495      | 519    |               |        |          |        |
| LRR19  | 517            | 540    | 520      | 543    |               |        |          |        |
| LRR20  | 541            | 564    | 544      | 567    |               |        |          |        |
| LRR21  | 565            | 588    | 568      | 591    |               |        |          |        |
| LRR22  | 589            | 611    | 592      | 613    |               |        |          |        |
| LRR23  | 612            | 634    | 615      | 635    |               |        |          |        |

AA, Amino Acid.

\*Insignificant hit.

\*\* Potential Leucine Rich Repeat at C terminal.

| Table S4. Model validation | of different regions of the Xa | 21 Protein Modeled using the HHpred toolkit |
|----------------------------|--------------------------------|---------------------------------------------|
|                            | 0                              |                                             |

| R/P ID     | Errat  | Verify 3D (%) | Ramachandran Plot Summary from Procheck (%) |      |     |     |
|------------|--------|---------------|---------------------------------------------|------|-----|-----|
|            |        |               | MFR                                         | AAR  | GAR | DR  |
| Xa21lrr_1  | 67.5   | 93.91         | 77.6                                        | 19.9 | 1.3 | 1.1 |
| Xa21lrr_2  | 61.333 | 97.7          | 72.5                                        | 25.2 | 1.7 | 0.6 |
| Xa21lrr_3  | 55     | 93.59         | 72.1                                        | 24.9 | 1.1 | 1.9 |
| Xa21lrr_4  | 74.167 | 96.71         | 76.5                                        | 21.8 | 1.3 | 0.4 |
| Xa21lrr_5  | 64.167 | 96.71         | 74.6                                        | 23.1 | 1.5 | 0.8 |
| Xa21lrr_6  | 61     | 93.03         | 71.3                                        | 25.8 | 0.8 | 2.1 |
| Xa21lrr_7  | 58.794 | 96.71         | 70.6                                        | 27.2 | 1.3 | 1   |
| Xa21lrr_8  | 58.667 | 99.84         | 71.9                                        | 26.4 | 1   | 0.8 |
| Xa21lrr_9  | 71     | 93.91         | 75.7                                        | 21.2 | 1.7 | 1.3 |
| Xa21lrr_10 | 51.5   | 95.07         | 70.7                                        | 25.8 | 1.7 | 1.7 |
| Xa21lrr_11 | 61.833 | 99.67         | 72.5                                        | 1.1  | 1.1 |     |
| Xa21lrr_12 | 67.667 | 91.94         | 75                                          | 22.8 | 1.3 | 1   |
| Xa21lrr_13 | 65.5   | 96.05         | 71.3                                        | 27   | 0.6 | 1.1 |
| Xa21lrr_14 | 59.167 | 94.9          | 73.6                                        | 24.1 | 1   | 1.3 |
| Xa21lrr_15 | 63.167 | 100           | 70.6                                        | 26.8 | 1   | 1.7 |
| Xa21lrr_16 | 46.667 | 91.61         | 71.5                                        | 26.8 | 1.5 | 0.2 |
| Xa21lrr_17 | 61.333 | 91.78         | 72.8                                        | 25.4 | 0.8 | 1   |
| Xa21lrr_18 | 43.937 | 84.7          | 74.8                                        | 22.4 | 2.5 | 0.4 |
| Xa21lrr_19 | 59.365 | 92.93         | 70.9                                        | 27.3 | 0.8 | 1   |
| Xa21lrr_20 | 56.167 | 95.07         | 73.6                                        | 25.8 | 1.1 | 0   |
| Xa21lrr_21 | 66     | 96.88         | 70.7                                        | 28.3 | 0.4 | 0.6 |
| Xa21lrr_22 | 61     | 92.27         | 71.5                                        | 26.8 | 1   | 0.8 |
| Xa21lrr_23 | 58.167 | 94.41         | 72.1                                        | 26.2 | 1.5 | 0.2 |
| Xa21lrr_24 | 69.5   | 97.2          | 75                                          | 24.1 | 0.8 | 0.2 |
| Xa21lrr_25 | 60.667 | 97.86         | 70.2                                        | 27.9 | 1   | 1   |
| Xa21lrr_26 | 62.167 | 99.34         | 72.5                                        | 26.6 | 0.8 | 0.2 |
| Xa21lrr_27 | 45.74  | 90.46         | 69.2                                        | 28.3 | 1.7 | 0.8 |
| Xa21lrr_28 | 51.33  | 93.75         | 70                                          | 27.5 | 1.5 | 1   |

| Xa21lrr_29  | E      | 46.05 | 87   | 12   | 0.4 | 0.6 |
|-------------|--------|-------|------|------|-----|-----|
| Xa21lrr_30  | 56.494 | 62.17 | 80.1 | 17   | 1.9 | 1   |
| Xa21lrr_31  | 72.194 | 90.95 | 81.8 | 16.6 | 0.6 | 1   |
| Xa21c12tm_1 | 67.5   | 0     | 95.2 | 4.8  | 0   | 0   |
| Xa21c12tm_2 | 60.526 | 0     | 88.1 | 11.9 | 0   | 0   |
| Xa21c12tm_3 | 81.579 | 0     | 92.9 | 7.1  | 0   | 0   |
| Xa21k_1     | 80.189 | 84.71 | 90.6 | 7.7  | 1.4 | 0.3 |
| Xa21k_2     | 67.192 | 74.92 | 89.2 | 8    | 1.7 | 1   |
| Xa21k_3     | 50.159 | 76.45 | 85   | 12.9 | 0.3 | 1.7 |
| Xa21k_4     | 64.353 | 67.89 | 86   | 9.4  | 2.8 | 1.7 |
| Xa21k_5     | 67.192 | 70.03 | 81.8 | 15   | 2.8 | 0.3 |
| Xa21k_6     | 70.219 | 90.52 | 88.8 | 7.3  | 1.4 | 2.4 |
| Xa21k_7     | 69.231 | 82.26 | 88.8 | 9.1  | 1.4 | 0.7 |
| Xa21k_8     | 65.696 | 88.38 | 87.1 | 10.5 | 2.1 | 0.3 |
| Xa21k_9     | 69.206 | 85.93 | 85.7 | 10.5 | 2.1 | 1.7 |
| Xa21k_10    | 76.025 | 80.43 | 87.8 | 9.4  | 2.1 | 0.7 |
| Xa21k_11    | 59.873 | 81.65 | 88.1 | 8.7  | 2.4 | 0.7 |
| Xa21k_12    | 59.973 | 76.15 | 85   | 11.9 | 2.8 | 0.3 |
| Xa21k_13    | 73.27  | 63.91 | 85.3 | 12.2 | 2.1 | 0.3 |
| Xa21k_14    | 75.159 | 82.87 | 82.5 | 15   | 1.7 | 0.7 |
| Xa21k_15    | 53.312 | 66.97 | 86.4 | 9.4  | 2.8 | 1.4 |
| Xa21k_16    | 78.797 | 78.9  | 87.8 | 10.8 | 0.7 | 0.7 |
| Xa21k_17    | 74.922 | 88.07 | 88.8 | 9.1  | 1   | 1   |
| Xa21k_18    | 69.401 | 87.16 | 88.8 | 8    | 2.4 | 0.7 |
| Xa21k_19    | 60.568 | 81.96 | 87.1 | 9.8  | 2.4 | 0.7 |
| Xa21k_20    | 67.628 | 79.51 | 85   | 11.2 | 2.1 | 1.7 |
| Xa21k_21    | 66.139 | 69.72 | 81.5 | 15   | 2.8 | 0.7 |
| Xa21k_22    | 77.987 | 92.97 | 87.4 | 10.8 | 1   | 0.7 |
| Xa21k_23    | 67.628 | 79.51 | 85   | 11.2 | 2.1 | 1.7 |
| Xa21k_24    | 62.3   | 88.38 | 82.2 | 16.8 | 0.3 | 0.7 |
| Xa21k_25    | 75.786 | 85.93 | 86.4 | 10.5 | 1.4 | 1.7 |

| Xa21k_26 | 68.671 | 77.06 | 88.8 | 7    | 3.1 | 1   |
|----------|--------|-------|------|------|-----|-----|
| Xa21k_27 | 69.811 | 86.85 | 85.7 | 10.1 | 2.4 | 1.7 |
| Xa21k_28 | 68.889 | 79.2  | 82.9 | 14.7 | 1.7 | 0.7 |
| Xa21k_29 | 74.051 | 87.16 | 87.1 | 10.1 | 1.4 | 1.4 |
| Xa21k_30 | 67.089 | 89.6  | 88.8 | 9.8  | 0.7 | 0.7 |
| Xa21k_31 | 60.417 | 74.41 | 87.3 | 10.4 | 1.2 | 1.2 |

R/P ID, Region or Protein ID; MFR, Most Favoured Regions; AAR, Additionally Allowed Regions; GAR, Generously Allowed Regions; DR, Disallowed Regions; E, Error.

**Table S5A**. Binding free energy contribution of the key binding-site residues calculated from the binding energy decomposition for Xa21 (kJmol<sup>-1</sup>) of complex 1a and complex 3.

| Residues | MM Energy            | Polar Energy        | Apolar Energy       | Total Energy      |
|----------|----------------------|---------------------|---------------------|-------------------|
| GLY-1    | -5.9687 ± 0.0086     | 0.0015 ± 0.0001     | 0.0000 ± 0.0000     | -5.9673 ± 0.0088  |
| GLY-1    | -6.6173 ± 0.0110     | 0.0013 ± 0.0000     | $0.0000 \pm 0.0000$ | -6.6161 ± 0.0111  |
| LYS-14   | -7.0653 ± 0.0099     | 0.0063 ± 0.0001     | $0.0000 \pm 0.0000$ | -7.0595 ± 0.0100  |
| LYS-14   | $-8.1081 \pm 0.0149$ | $0.0017 \pm 0.0001$ | $0.0000 \pm 0.0000$ | -8.1064 ± 0.0151  |
| ARG-46   | -6.0954 ± 0.0079     | $0.0009 \pm 0.0000$ | $0.0000 \pm 0.0000$ | -6.0944 ± 0.0081  |
| ARG-46   | -6.3763 ± 0.0124     | 0.0003 ± 0.0000     | $0.0000 \pm 0.0000$ | -6.3765 ± 0.0119  |
| ARG-47   | -6.9610 ± 0.0162     | -0.0007 ± 0.0000    | $0.0000 \pm 0.0000$ | -6.9616 ± 0.0169  |
| ARG-47   | -7.7415 ± 0.0134     | $0.0016 \pm 0.0001$ | $0.0000 \pm 0.0000$ | -7.7399 ± 0.0131  |
| ARG-48   | -6.8459 ± 0.0124     | $0.0002 \pm 0.0001$ | $0.0000 \pm 0.0000$ | -6.8457 ± 0.0121  |
| ARG-48   | -6.8279 ± 0.0127     | -6.8279 ± 0.0127    | $0.0000 \pm 0.0000$ | -6.8281 ± 0.0130  |
| ARG-49   | -5.9652 ± 0.0092     | -0.0003 ± 0.0000    | $0.0000 \pm 0.0000$ | -5.9652 ± 0.0089  |
| ARG-49   | -6.0932 ± 0.0099     | -0.0000 ± 0.0000    | $0.0000 \pm 0.0000$ | -6.0934 ± 0.0097  |
| ARG-50   | -5.5553 ± 0.0070     | -0.0000 ± 0.0000    | $0.0000 \pm 0.0000$ | -5.5555 ± 0.0071  |
| ARG-50   | -5.7137 ± 0.0080     | -0.0000 ± 0.0000    | $0.0000 \pm 0.0000$ | -5.7136 ± 0.0082  |
| ARG-54   | -6.4122 ± 0.0072     | $0.0038 \pm 0.0001$ | $0.0000 \pm 0.0000$ | -6.4084 ± 0.0071  |
| ARG-54   | -6.8861 ± 0.0103     | $0.0038 \pm 0.0001$ | $0.0000 \pm 0.0000$ | -6.8820 ± 0.0101  |
| LYS-57   | -9.0314 ± 0.0137     | 0.0055 ± 0.0002     | $0.0000 \pm 0.0000$ | -9.0257 ± 0.0133  |
| LYS-57   | -8.7035 ± 0.0188     | -8.7035 ± 0.0188    | $0.0000 \pm 0.0000$ | -8.6975 ± 0.0188  |
| ARG-61   | -11.7671 ± 0.0208    | 0.0299 ± 0.0009     | 0.0000 ± 0.0000     | -11.7368 ± 0.0211 |
| ARG-61   | -12.0987 ± 0.0289    | 0.0007 ± 0.0011     | $0.0000 \pm 0.0000$ | -12.0966 ± 0.0287 |
| ARG-80   | -8.1822 ± 0.0129     | 0.0088 ± 0.0002     | $0.0000 \pm 0.0000$ | -8.1740 ± 0.0131  |
| ARG-80   | -7.7939 ± 0.0131     | 0.0094 ± 0.0003     | $0.0000 \pm 0.0000$ | -7.7846 ± 0.0129  |
| ARG-99   | -7.0884 ± 0.0101     | 0.0123 ± 0.0002     | $0.0000 \pm 0.0000$ | -7.0757 ± 0.0102  |
| ARG-99   | -8.1815 ± 0.0156     | $0.0061 \pm 0.0002$ | $0.0000 \pm 0.0000$ | -8.1758 ± 0.0151  |
| ARG-102  | -6.9704 ± 0.0080     | $0.0082 \pm 0.0001$ | $0.0000 \pm 0.0000$ | -6.9622 ± 0.0080  |
| ARG-102  | -7.3174 ± 0.0110     | 0.0070 ± 0.0002     | $0.0000 \pm 0.0000$ | -7.3110 ± 0.0108  |
| LYS-126  | -7.7376 ± 0.0109     | 0.0153 ± 0.0002     | $0.0000 \pm 0.0000$ | -7.7225 ± 0.0108  |
| LYS-126  | -7.7596 ± 0.0126     | $0.0143 \pm 0.0004$ | $0.0000 \pm 0.0000$ | -7.7452 ± 0.0123  |
| ARG-138  | -12.7486 ± 0.0406    | 0.1348 ± 0.0030     | $0.0000 \pm 0.0000$ | -12.6158 ± 0.0420 |
| ARG-138  | -15.9961 ± 0.0589    | 0.0159 ± 0.0031     | $0.0000 \pm 0.0000$ | -15.9806 ± 0.0598 |
| ARG-143  | -9.4608 ± 0.0172     | 0.0433 ± 0.0010     | 0.0000 ± 0.0000     | -9.4171 ± 0.0167  |
| ARG-143  | -10.4853 ± 0.0255    | 0.0920 ± 0.0027     | 0.0000 ± 0.0000     | -10.3915 ± 0.0251 |
| LYS-150  | -8.6361 ± 0.0148     | 0.0563 ± 0.0009     | 0.0000 ± 0.0000     | -8.5801 ± 0.0149  |
| LYS-150  | -8.1667 ± 0.0139     | 0.0326 ± 0.0007     | 0.0000 ± 0.0000     | -8.1342 ± 0.0140  |
| LYS-159  | -20.3711 ± 0.0853    | 0.4720 ± 0.0136     | 0.0000 ± 0.0000     | -19.8979 ± 0.0771 |
| LYS-159  | -24.6602 ± 0.1174    | 0.2545 ± 0.0190     | $0.0000 \pm 0.0000$ | -24.4097 ± 0.1063 |

| PHE-183 | -0.8145 ± 0.0065                | 0.3040 ± 0.0067               | $0.0000 \pm 0.0000$  | -0.5109 ± 0.0066               |
|---------|---------------------------------|-------------------------------|----------------------|--------------------------------|
| PHE-183 | -0.7919 ± 0.0085                | 0.1788 ± 0.0062               | -0.0028 ± 0.0005     | -0.6157 ± 0.0064               |
| ARG-185 | <mark>-16.1800 ± 0.1050</mark>  | <mark>0.0717 ± 0.0202</mark>  | -0.0009 ± 0.0003     | <mark>-16.1082 ± 0.1047</mark> |
| ARG-185 | <mark>-20.2474 ± 0.1126</mark>  | <mark>0.2793 ± 0.0210</mark>  | -0.0003 ± 0.0003     | <mark>-19.9701 ± 0.1071</mark> |
| ARG-225 | -14.1212 ± 0.0362               | <mark>0.2711 ± 0.0035</mark>  | 0.0000 ± 0.0000      | -13.8508 ± 0.0342              |
| ARG-225 | -12.4740 ± 0.0454               | 0.1394 ± 0.0040               | 0.0000 ± 0.0000      | -12.3361 ± 0.0452              |
| ARG-230 | - <mark>51.2735 ± 0.3173</mark> | <mark>30.8192 ± 0.4278</mark> | -0.4258 ± 0.0074     | <mark>-20.8768 ± 0.1632</mark> |
| ARG-230 | <mark>-45.8491 ± 0.4546</mark>  | <mark>26.7476 ± 0.4994</mark> | -0.3229 ± 0.0068     | <mark>-19.4217 ± 0.1459</mark> |
| LYS-233 | -25.3704 ± 0.2250               | 3.8871 ± 0.2018               | $-0.0159 \pm 0.0016$ | -21.5039 ± 0.1351              |
| LYS-233 | -19.5911 ± 0.1327               | 0.9838 ± 0.0358               | 0.0000 ± 0.0000      | -18.6022 ± 0.1167              |
| LYS-244 | -10.8173 ± 0.0210               | 0.2516 ± 0.0029               | 0.0000 ± 0.0000      | -10.5651 ± 0.0190              |
| LYS-244 | -8.7742 ± 0.0230                | 0.0442 ± 0.0031               | 0.0000 ± 0.0000      | -8.7304 ± 0.0217               |
| ARG-258 | -23.3446 ± 0.1447               | 1.6989 ± 0.0749               | $-0.0021 \pm 0.0006$ | -21.6513 ± 0.1107              |
| ARG-258 | -16.7439 ± 0.0917               | 0.5922 ± 0.0170               | 0.0000 ± 0.0000      | -16.1503 ± 0.0838              |
| LYS-262 | -13.2970 ± 0.0336               | 0.3120 ± 0.0065               | 0.0000 ± 0.0000      | -12.9841 ± 0.0292              |
| LYS-262 | -9.8426 ± 0.0371                | -0.2366 ± 0.0064              | 0.0000 ± 0.0000      | -10.0802 ± 0.0359              |
| ARG-293 | -11.5673 ± 0.0262               | 0.5609 ± 0.0067               | 0.0000 ± 0.0000      | -11.0069 ± 0.0210              |
| ARG-293 | -8.8897 ± 0.0250                | -0.0087 ± 0.0041              | 0.0000 ± 0.0000      | -8.8993 ± 0.0246               |
| ARG-295 | -11.8382 ± 0.0256               | 0.5212 ± 0.0068               | $0.0000 \pm 0.0000$  | $-11.3179 \pm 0.0217$          |
| ARG-295 | -10.0747 ± 0.0287               | 0.0856 ± 0.0045               | $0.0000 \pm 0.0000$  | -9.9901 ± 0.0278               |
| TRP-303 | -35.7820 ± 0.0836               | 24.4156 ± 0.0511              | -1.9451 ± 0.0072     | -1.9451 ± 0.0072               |
| TRP-303 | -29.0365 ± 0.1575               | 17.9697 ± 0.1082              | -1.3214 ± 0.0084     | -12.3897 ± 0.0892              |
| ARG-304 | -44.8842 ± 0.3680               | 18.6848 ± 0.4557              | -0.6127 ± 0.0094     | -26.8115 ± 0.1772              |
| ARG-304 | -30.1770 ± 0.3256               | 11.2788 ± 0.4504              | -0.4571 ± 0.0105     | -19.3743 ± 0.2091              |
| ARG-310 | -11.7278 ± 0.0279               | 0.2678 ± 0.0051               | $0.0000 \pm 0.0000$  | -11.4595 ± 0.0236              |
| ARG-310 | -8.2929 ± 0.0343                | -0.1811 ± 0.0035              | $0.0000 \pm 0.0000$  | -8.4730 ± 0.0338               |
| LYS-326 | -14.6779 ± 0.0411               | <mark>0.7315 ± 0.0092</mark>  | 0.0000 ± 0.0000      | -13.9471 ± 0.0348              |
| LYS-326 | -13.1947 ± 0.0415               | <mark>0.1141 ± 0.0054</mark>  | 0.0000 ± 0.0000      | -13.0792 ± 0.0404              |
| LYS-368 | -9.2696 ± 0.0292                | 0.2457 ± 0.0062               | $0.0000 \pm 0.0000$  | -9.0227 ± 0.0245               |
| LYS-368 | -8.4412 ± 0.0274                | 0.0376 ± 0.0032               | $0.0000 \pm 0.0000$  | -8.4036 ± 0.0249               |
| TYR-380 | -17.6920 ± 0.1470               | 12.4566 ± 0.1215              | -1.4746 ± 0.0082     | -6.7080 ± 0.0751               |
| TYR-380 | -17.5009 ± 0.1034               | 13.7472 ± 0.0899              | -1.3689 ± 0.0075     | -5.1200 ± 0.0786               |
| ARG-387 | -10.6875 ± 0.0620               | 0.3596 ± 0.0126               | $0.0000 \pm 0.0000$  | -10.3284 ± 0.0500              |
| ARG-387 | -7.1987 ± 0.0565                | -0.2713 ± 0.0124              | $0.0000 \pm 0.0000$  | -7.4707 ± 0.0460               |
| ARG-396 | -10.3049 ± 0.0263               | 0.5441 ± 0.0081               | 0.0000 ± 0.0000      | -9.7604 ± 0.0214               |
| ARG-396 | -11.6806 ± 0.0288               | 0.5808 ± 0.0069               | 0.0000 ± 0.0000      | -11.0986 ± 0.0258              |
| LYS-398 | -15.4063 ± 0.0680               | 1.0771 ± 0.0189               | 0.0000 ± 0.0000      | -14.3305 ± 0.0528              |
| LYS-398 | -15.6341 ± 0.0597               | 1.2213 ± 0.0166               | $0.0000 \pm 0.0000$  | -14.4128 ± 0.0544              |

| LEU-404 | -5.9956 ± 0.0290  | 0.0654 ± 0.0063  | -0.5861 ± 0.0045     | -6.5164 ± 0.0286  |
|---------|-------------------|------------------|----------------------|-------------------|
| LEU-404 | -7.3450 ± 0.0381  | 0.1033 ± 0.0064  | -0.6953 ± 0.0047     | -7.9384 ± 0.0405  |
| LYS-433 | -8.4102 ± 0.0782  | -0.1268 ± 0.0177 | $0.0000 \pm 0.0000$  | -8.5422 ± 0.0622  |
| LYS-433 | -5.4489 ± 0.0675  | -0.5965 ± 0.0161 | $0.0000 \pm 0.0000$  | -6.0441 ± 0.0551  |
| ARG-522 | -5.7350 ± 0.1159  | -2.1403 ± 0.0406 | $-0.0091 \pm 0.0014$ | -7.8838 ± 0.1036  |
| ARG-522 | -15.9112 ± 0.0918 | -0.1566 ± 0.0236 | -0.0008 ± 0.0004     | -16.0673 ± 0.0839 |
| PRO-608 | 6.1284 ± 0.0213   | 0.0269 ± 0.0005  | $0.0000 \pm 0.0000$  | 6.1555 ± 0.0216   |
| PRO-608 | 6.9141 ± 0.0275   | 0.0034 ± 0.0003  | $0.0000 \pm 0.0000$  | 6.9174 ± 0.0278   |

Green markings represent residues showing higher interaction values; Yellow markings represent residues showing average interaction values.

Table S5B. Binding free energy contribution of the key binding-site residues calculated from the binding energy decomposition for Xa21 (kJmol<sup>-</sup> <sup>1</sup>) of complex 1b and complex 2

| Residues            | MM Energy                      | Polar Energy                 | Apolar Energy                 | Total Energy                   |
|---------------------|--------------------------------|------------------------------|-------------------------------|--------------------------------|
| GLY-1               | -9.7687 ± 0.0477               | 0.0551 ± 0.0374              | $0.0004 \pm 0.0011$           | -9.7131 ± 0.0613               |
| GLY-1               | -7.5079 ± 0.0301               | 0.1413 ± 0.0351              | -0.0025 ± 0.0020              | -7.3705 ± 0.0457               |
| LYS-14              | -13.2228 ± 0.0361              | 0.1253 ± 0.0151              | 0.0040 ± 0.0023               | -13.0940 ± 0.0397              |
| LYS-14              | -12.7693 ± 0.0555              | 1.1321 ± 0.0321              | 0.0015 ± 0.0027               | -11.6347 ± 0.0530              |
| ARG-46              | -8.7174 ± 0.0210               | 0.0420 ± 0.0153              | -0.0010 ± 0.0034              | -8.6771 ± 0.0268               |
| ARG-46              | -7.9087 ± 0.0231               | 0.0626 ± 0.0178              | -0.0027 ± 0.0026              | -7.8475 ± 0.0293               |
| ARG-47              | -10.6854 ± 0.0529              | 0.0389 ± 0.0182              | 0.0016 ± 0.0025               | -10.6396 ± 0.0568              |
| ARG-47              | -9.7357 ± 0.0387               | 0.1075 ± 0.0182              | -0.0010 ± 0.0034              | -9.6296 ± 0.0430               |
| ARG-48              | -10.6700 ± 0.0354              | 0.0453 ± 0.0183              | 0.0035 ± 0.0029               | -10.6213 ± 0.0391              |
| ARG-48              | -7.3358 ± 0.0293               | 0.0272 ± 0.0192              | $0.0024 \pm 0.0025$           | -7.3062 ± 0.0351               |
| ARG-49              | -8.1130 ± 0.0235               | 0.0321 ± 0.0192              | 0.0003 ± 0.0021               | -8.0799 ± 0.0299               |
| ARG-49              | -6.1361 ± 0.0236               | 0.0446 ± 0.0203              | $0.0001 \pm 0.0017$           | -6.0928 ± 0.0305               |
| ARG-50              | -7.2799 ± 0.0188               | 0.0055 ± 0.0177              | -0.0016 ± 0.0017              | -7.2757 ± 0.0258               |
| ARG-50              | -6.1409 ± 0.0224               | 0.0311 ± 0.0196              | 0.0030 ± 0.0020               | -6.1063 ± 0.0287               |
| ARG-54              | -9.7234 ± 0.0181               | 0.0734 ± 0.0167              | -0.0057 ± 0.0025              | -9.6553 ± 0.0247               |
| ARG-54              | -8.4683 ± 0.0269               | 0.1564 ± 0.0186              | -0.0045 ± 0.0032              | -8.3167 ± 0.0317               |
| LYS-57              | <mark>-15.9923 ± 0.0486</mark> | <mark>0.1749 ± 0.0320</mark> | <mark>0.0013 ± 0.0028</mark>  | <mark>-15.8120 ± 0.0575</mark> |
| LYS-57              | <mark>-15.8912 ± 0.0428</mark> | <mark>0.7352 ± 0.0342</mark> | -0.0093 ± 0.0031              | <mark>-15.1653 ± 0.0514</mark> |
| ARG-61              | <mark>-27.2170 ± 0.0696</mark> | <mark>1.1002 ± 0.0183</mark> | <mark>0.0005 ± 0.0032</mark>  | <mark>-26.1161 ± 0.0670</mark> |
| ARG-61              | -23.5408 ± 0.0673              | <mark>1.8516 ± 0.0280</mark> | -0.0004 ± 0.0021              | <mark>-21.6908 ± 0.0631</mark> |
| ARG-80              | <mark>-13.1232 ± 0.0303</mark> | <mark>0.1285 ± 0.0147</mark> | <mark>-0.0006 ± 0.0023</mark> | <mark>-12.9947 ± 0.0328</mark> |
| ARG-80              | <mark>-10.9371 ± 0.0295</mark> | <mark>0.3749 ± 0.0153</mark> | <mark>-0.0028 ± 0.0026</mark> | <mark>-10.5658 ± 0.0311</mark> |
| <mark>ARG-99</mark> | <mark>-12.8909 ± 0.0278</mark> | <mark>0.1415 ± 0.0157</mark> | <mark>0.0030 ± 0.0022</mark>  | <mark>-12.7473 ± 0.0316</mark> |
| ARG-99              | <mark>-8.8306 ± 0.0444</mark>  | <mark>0.1862 ± 0.0175</mark> | 0.0012 ± 0.0028               | -8.6446 ± 0.0450               |
| ARG-102             | <mark>-10.9864 ± 0.0197</mark> | <mark>0.1216 ± 0.0162</mark> | -0.0030 ± 0.0022              | <mark>-10.8691 ± 0.0253</mark> |
| ARG-102             | -10.7391 ± 0.0396              | 0.3819 ± 0.0176              | -0.0023 ± 0.0027              | -10.3588 ± 0.0387              |

| LYS-126              | <mark>-12.0785 ± 0.0219</mark> | 0.1093 ± 0.0350               | -0.0044 ± 0.0026               | <mark>-11.9721 ± 0.0409</mark> |
|----------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|
| LYS-126              | <mark>-10.7144 ± 0.0278</mark> | <mark>0.2339 ± 0.0350</mark>  | -0.0017 ± 0.0027               | <mark>-10.4822 ± 0.0420</mark> |
| ARG-138              | <mark>-60.8613 ± 0.3245</mark> | <mark>12.7899 ± 0.3309</mark> | -0.4855 ± 0.0125               | <mark>-48.5570 ± 0.1529</mark> |
| ARG-138              | -49.5846 ± 0.5068              | <mark>22.8854 ± 0.4595</mark> | <mark>-0.9228 ± 0.0164</mark>  | <mark>-27.6154 ± 0.2646</mark> |
| ARG-143              | -16.7600 ± 0.0606              | <mark>0.0757 ± 0.0182</mark>  | <mark>0.0025 ± 0.0019</mark>   | <mark>-16.6808 ± 0.0643</mark> |
| ARG-143              | <mark>-13.3313 ± 0.0719</mark> | <mark>0.4140 ± 0.0186</mark>  | <mark>-0.0012 ± 0.0029</mark>  | -12.9194 ± 0.0750              |
| LYS-150              | -13.0782 ± 0.0282              | <mark>0.1741 ± 0.0336</mark>  | -0.0002 ± 0.0025               | -12.9043 ± 0.0425              |
| LYS-150              | <mark>-9.8829 ± 0.0297</mark>  | <mark>0.2478 ± 0.0338</mark>  | -0.0023 ± 0.0023               | <mark>-9.6369 ± 0.0439</mark>  |
| LYS-159              | -73.7898 ± 0.3612              | <mark>54.5355 ± 0.6430</mark> | <mark>-1.1879 ± 0.0091</mark>  | <mark>-20.4579 ± 0.3622</mark> |
| LYS-159              | -91.6969 ± 0.3070              | <mark>75.9152 ± 0.6604</mark> | <mark>-1.7192 ± 0.0106</mark>  | <mark>-17.4810 ± 0.4501</mark> |
| PHE-183              | <mark>-13.6334 ± 0.0724</mark> | <mark>4.4258 ± 0.0718</mark>  | - <mark>2.2752 ± 0.0075</mark> | <mark>-11.4786 ± 0.0552</mark> |
| PHE-183              | <mark>-15.3290 ± 0.0619</mark> | <mark>8.0958 ± 0.0418</mark>  | - <mark>2.0325 ± 0.0088</mark> | <mark>-9.2657 ± 0.0619</mark>  |
| ARG-185              | -113.5355 ± 0.5004             | 88.6535 ± 0.4657              | -2.6790 ± 0.0145               | -27.5459 ± 0.2336              |
| ARG-185              | -74.7709 ± 0.4661              | 58.1120 ± 0.6605              | -1.8893 ± 0.0163               | -18.5529 ± 0.2538              |
| ARG-225              | <mark>-17.6968 ± 0.0623</mark> | <mark>-0.0072 ± 0.0153</mark> | -0.0004 ± 0.0023               | <mark>-17.7024 ± 0.0654</mark> |
| ARG-225              | <mark>-17.9356 ± 0.0651</mark> | <mark>0.1791 ± 0.0164</mark>  | <mark>0.0061 ± 0.0034</mark>   | <mark>-17.7503 ± 0.0659</mark> |
| ARG-230              | -37.4765 ± 0.2447              | 4.4832 ± 0.2574               | -0.1962 ± 0.0080               | -33.1992 ± 0.1140              |
| ARG-230              | -39.5601 ± 0.1824              | 9.1658 ± 0.1995               | -0.1078 ± 0.0049               | -30.5009 ± 0.1469              |
| LYS-233              | <mark>-31.9923 ± 0.2901</mark> | <mark>2.9629 ± 0.2473</mark>  | <mark>-0.0813 ± 0.0046</mark>  | <mark>-29.1132 ± 0.1918</mark> |
| <mark>LYS-233</mark> | <mark>-19.4239 ± 0.1366</mark> | 0.3268 ± 0.0549               | -0.0026 ± 0.0021               | <mark>-19.0988 ± 0.1230</mark> |
| LYS-244              | -9.1315 ± 0.0192               | 0.0687 ± 0.0366               | -0.0037 ± 0.0027               | -9.0665 ± 0.0431               |
| LYS-244              | -7.7724 ± 0.0322               | 0.0699 ± 0.0368               | -0.0010 ± 0.0031               | -7.7030 ± 0.0477               |
| <mark>ARG-258</mark> | <mark>-17.3387 ± 0.1255</mark> | <mark>-0.3142 ± 0.0374</mark> | -0.0019 ± 0.0027               | <mark>-17.6526 ± 0.1205</mark> |
| <mark>ARG-258</mark> | <mark>-16.1880 ± 0.1022</mark> | <mark>0.3972 ± 0.0434</mark>  | <mark>-0.0033 ± 0.0024</mark>  | <mark>-15.7961 ± 0.0937</mark> |
| LYS-262              | -8.0191 ± 0.0282               | 0.0078 ± 0.0362               | -0.0031 ± 0.0029               | -8.0134 ± 0.0471               |
| LYS-262              | -6.8243 ± 0.0348               | 0.0015 ± 0.0369               | -0.0012 ± 0.0038               | -6.8230 ± 0.0501               |
| ARG-293              | -8.1288 ± 0.0219               | 0.0178 ± 0.0148               | -0.0036 ± 0.0028               | -8.1146 ± 0.0271               |
| ARG-293              | -7.4879 ± 0.0309               | -0.0379 ± 0.0152              | 0.0026 ± 0.0038                | -7.5227 ± 0.0319               |
| ARG-295              | -9.0904 ± 0.0235               | 0.0002 ± 0.0156               | $0.0001 \pm 0.0023$            | -9.0921 ± 0.0280               |
| ARG-295              | -9.5394 ± 0.0308               | 0.0043 ± 0.0176               | 0.0037 ± 0.0029                | -9.5315 ± 0.0350               |
| TRP-303              | -0.8300 ± 0.0061               | -0.0050 ± 0.0070              | -0.0006 ± 0.0024               | -0.8357 ± 0.0100               |
| TRP-303              | 0.2776 ± 0.0173                | -0.2211 ± 0.0131              | $0.0018 \pm 0.0024$            | $0.0580 \pm 0.0133$            |
| ARG-304              | -6.4413 ± 0.1145               | -0.5703 ± 0.0485              | -0.0017 ± 0.0020               | -7.0067 ± 0.1053               |
| ARG-304              | -9.9707 ± 0.0927               | -0.3307 ± 0.0196              | $0.0001 \pm 0.0024$            | -10.2977 ± 0.0899              |
| ARG-310              | -6.3695 ± 0.0226               | 0.0136 ± 0.0165               | -0.0007 ± 0.0027               | -6.3562 ± 0.0276               |
| ARG-310              | -6.0378 ± 0.0236               | 0.0127 ± 0.0155               | 0.0068 ± 0.0029                | -6.0196 ± 0.0280               |
| LYS-326              | -12.4760 ± 0.0391              | 0.0166 ± 0.0333               | -0.0036 ± 0.0026               | -12.4629 ± 0.0522              |
| LYS-326              | -14.4390 ± 0.0570              | -0.0933 ± 0.0350              | -0.0013 ± 0.0029               | -14.5316 ± 0.0653              |

| LYS-368 | -4.9048 ± 0.0218     | 0.0424 ± 0.0357      | $0.0012 \pm 0.0020$  | -4.8615 ± 0.0419  |
|---------|----------------------|----------------------|----------------------|-------------------|
| LYS-368 | -5.6806 ± 0.0319     | 0.0640 ± 0.0339      | -0.0016 ± 0.0026     | -5.6164 ± 0.0459  |
| TYR-380 | $-0.0417 \pm 0.0044$ | 0.0071 ± 0.0093      | 0.0010 ± 0.0025      | -0.0333 ± 0.0109  |
| TYR-380 | -1.1177 ± 0.0377     | 0.6878 ± 0.0470      | -0.0535 ± 0.0035     | -0.4825 ± 0.0217  |
| ARG-387 | -3.6936 ± 0.0291     | 0.0355 ± 0.0161      | 0.0004 ± 0.0022      | -3.6592 ± 0.0338  |
| ARG-387 | -4.2876 ± 0.0465     | -0.0777 ± 0.0161     | $0.0009 \pm 0.0021$  | -4.3656 ± 0.0470  |
| ARG-396 | -7.1893 ± 0.0237     | 0.0282 ± 0.0166      | 0.0009 ± 0.0026      | -7.1616 ± 0.0294  |
| ARG-396 | -7.7624 ± 0.0312     | $-0.0491 \pm 0.0173$ | $0.0049 \pm 0.0028$  | -7.8072 ± 0.0351  |
| LYS-398 | -11.9927 ± 0.0495    | 0.0646 ± 0.0333      | -0.0044 ± 0.0024     | -11.9305 ± 0.0580 |
| LYS-398 | -9.1156 ± 0.0365     | -9.1156 ± 0.0365     | 0.0052 ± 0.0025      | -9.1836 ± 0.0489  |
| LEU-404 | -0.1325 ± 0.0014     | -0.0008 ± 0.0024     | $0.0015 \pm 0.0024$  | -0.1319 ± 0.0037  |
| LEU-404 | -0.5346 ± 0.0064     | 0.0512 ± 0.0027      | -0.0045 ± 0.0027     | -0.4880 ± 0.0061  |
| LYS-433 | -2.7775 ± 0.0368     | 0.0212 ± 0.0322      | $0.0031 \pm 0.0026$  | -2.7561 ± 0.0494  |
| LYS-433 | -3.7705 ± 0.0586     | 0.0964 ± 0.0254      | -0.0013 ± 0.0017     | -3.6767 ± 0.0637  |
| ARG-522 | -26.6830 ± 0.3555    | 16.4826 ± 0.4122     | -0.6542 ± 0.0112     | -10.8558 ± 0.1752 |
| ARG-522 | -72.0310 ± 0.5148    | 73.5158 ± 0.5014     | $-1.9091 \pm 0.0136$ | -0.4415 ± 0.3213  |
| PRO-608 | -22.3819 ± 0.4220    | 4.0357 ± 0.2917      | -0.0727 ± 0.0058     | -18.4335 ± 0.2748 |
| PRO-608 | -4.4437 ± 0.1578     | 0.2507 ± 0.0439      | $0.0002 \pm 0.0024$  | -4.1905 ± 0.1637  |

Green markings represent residues showing higher interaction values; Yellow markings represent residues showing average interaction values.

**Table S5C**. Binding free energy contribution of the key binding-site residues calculated from the binding energy decomposition for RaxX21-sY (kJmol<sup>-1</sup>) of complex 1a and complex 3.

| Residues | MM Energy                      | Polar Energy                  | Apolar Energy                 | Total Energy                   |
|----------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|
| VAL-2    | -24.6045 ± 0.1332              | 12.6492 ± 0.1220              | -1.5783 ± 0.0093              | -13.5344 ± 0.0765              |
| VAL-2    | -13.0105 ± 0.1020              | 7.0837 ± 0.0886               | -0.5546 ± 0.0079              | -6.4884 ± 0.0514               |
| GLY-3    | -13.6600 ± 0.1274              | 8.9606 ± 0.1514               | -1.4675 ± 0.0076              | -6.1731 ± 0.0591               |
| GLY-3    | -16.0877 ± 0.1713              | 12.1984 ± 0.1730              | -1.0387 ± 0.0132              | -4.9325 ± 0.0554               |
| PRO-14   | <mark>-13.3340 ± 0.0830</mark> | <mark>5.3404 ± 0.0618</mark>  | <mark>-1.2992 ± 0.0104</mark> | <mark>-9.2938 ± 0.0723</mark>  |
| PRO-14   | <mark>-18.7857 ± 0.1110</mark> | 7.9902 ± 0.0944               | <mark>-1.8124 ± 0.0082</mark> | <mark>-12.6051 ± 0.0563</mark> |
| LYS-15   | -88.6216 ± 0.4083              | 81.5238 ± 0.7059              | -2.6593 ± 0.0128              | -9.7518 ± 0.4931               |
| LYS-15   | -65.9948 ± 0.3908              | <mark>53.6579 ± 0.7919</mark> | -2.0346 ± 0.0109              | -14.3603 ± 0.5324              |

Green markings represent residues showing higher interaction values; Yellow markings represent residues showing average interaction values.

**Table S5D**. Binding free energy contribution of the key binding-site residues calculated from the binding energy decomposition for OsSERK2 (kJmol<sup>-1</sup>) of complex 1b and complex 2.

| Residues | MM Energy                      | Polar Energy                  | Apolar Energy        | Total Energy                   |
|----------|--------------------------------|-------------------------------|----------------------|--------------------------------|
| LYS-46   | 20.2439 ± 0.2959               | -0.6592 ± 0.1510              | -0.0167 ± 0.0039     | 19.5717 ± 0.2614               |
| LYS-46   | -15.7543 ± 0.3780              | 3.4063 ± 0.2380               | -0.1518 ± 0.0063     | -12.4987 ± 0.2876              |
| ASP-47   | -47.8659 ± 0.2763              | 22.9919 ± 0.2677              | -0.0552 ± 0.0039     | -24.9359 ± 0.1862              |
| ASP-47   | -16.3727 ± 0.2586              | 0.0132 ± 0.1916               | $-0.0054 \pm 0.0031$ | -16.3583 ± 0.1525              |
| LEU-59   | -8.3827 ± 0.0711               | 0.0982 ± 0.0334               | -1.2386 ± 0.0090     | -9.5206 ± 0.0585               |
| LEU-59   | -4.8219 ± 0.0675               | 0.1678 ± 0.0182               | -0.5323 ± 0.0122     | -5.1878 ± 0.0849               |
| ASP-80   | -23.5021 ± 0.2628              | 5.3938 ± 0.1197               | 0.0047 ± 0.0045      | -18.1082 ± 0.1873              |
| ASP-80   | -40.5096 ± 0.2140              | 10.5007 ± 0.1642              | $-0.0024 \pm 0.0043$ | -30.0019 ± 0.1448              |
| PHE-137  | -13.6270 ± 0.0961              | 4.9343 ± 0.0622               | -1.6782 ± 0.0128     | -10.3732 ± 0.0657              |
| PHE-137  | -24.0051 ± 0.2385              | 14.2520 ± 0.1632              | -1.4993 ± 0.0222     | -11.2639 ± 0.1178              |
| LYS-164  | <mark>-85.3566 ± 0.6218</mark> | <mark>63.6532 ± 0.9761</mark> | -0.6962 ± 0.0122     | <mark>-22.4333 ± 0.4886</mark> |
| LYS-164  | -53.8833 ± 0.6652              | <mark>28.6518 ± 0.7936</mark> | -0.6757 ± 0.0153     | <mark>-25.9628 ± 0.3910</mark> |
| LYS-183  | -56.9942 ± 0.4190              | 6.9810 ± 0.2642               | -0.0728 ± 0.0063     | -50.0972 ± 0.2914              |
| LYS-183  | -42.8270 ± 0.4131              | 10.7269 ± 0.4008              | $-0.1961 \pm 0.0093$ | -32.3350 ± 0.2338              |
| ARG-192  | -18.2370 ± 0.1072              | 0.9081 ± 0.0294               | -0.0042 ± 0.0049     | -17.3383 ± 0.1031              |
| ARG-192  | -18.2371 ± 0.2376              | 1.3801 ± 0.0571               | -0.0050 ± 0.0048     | -16.8526 ± 0.2047              |
| ARG-212  | -51.5250 ± 0.4645              | 8.0290 ± 0.3351               | -0.2861 ± 0.0124     | -43.7914 ± 0.2648              |
| ARG-212  | -34.6025 ± 0.3026              | 2.0019 ± 0.0980               | -0.0222 ± 0.0051     | -32.6356 ± 0.2480              |
| ARG-218  | -14.9573 ± 0.1097              | <mark>0.5054 ± 0.0249</mark>  | -0.0056 ± 0.0045     | <mark>-14.4520 ± 0.1065</mark> |
| ARG-218  | <mark>-15.4568 ± 0.1678</mark> | 0.6392 ± 0.0271               | -0.0000 ± 0.0050     | <mark>-14.8206 ± 0.1576</mark> |
| LYS-222  | -8.8753 ± 0.0885               | 0.3428 ± 0.0542               | $0.0018 \pm 0.0043$  | -8.5338 ± 0.1009               |
| LYS-222  | -7.5329 ± 0.1065               | 0.5910 ± 0.0484               | $0.0029 \pm 0.0041$  | -6.9419 ± 0.1145               |
| LYS-232  | -6.4713 ± 0.0955               | 0.2985 ± 0.0473               | -0.0015 ± 0.0053     | -6.1758 ± 0.1048               |
| LYS-232  | -0.0178 ± 0.0810               | 0.5993 ± 0.0478               | 0.0012 ± 0.0059      | 0.5819 ± 0.0915                |
| LYS-238  | -11.9570 ± 0.1207              | 0.1138 ± 0.0472               | -0.0023 ± 0.0047     | -11.8461 ± 0.1287              |
| LYS-238  | -6.7402 ± 0.1094               | 0.3987 ± 0.0503               | 0.0018 ± 0.0052      | -6.3363 ± 0.1185               |

Green markings represent residues showing higher interaction values; Yellow markings represent residues showing average interaction values.

 Table S6A: Protein-Protein Main Chain-Side Chain Hydrogen Bonds of complex 1.

|           |      | B                 | efore Simulatio | on              |      |      |
|-----------|------|-------------------|-----------------|-----------------|------|------|
|           | Prot | tein-Protein Maii | n Chain-Side Cl | hain Hydrogen B | onds |      |
| <br>DON   | IOR  |                   |                 | ACCE            | PTOR |      |
| <br>CHAIN | RES  | ATOM              | POS             | CHAIN           | RES  | ΑΤΟΜ |
| <br>А     | SER  | OG                | 72              | С               | PRO  | 0    |
| А         | ASP  | OD2               | 71              | С               | ASN  | 0    |
| <br>А     | ASP  | OD2               | 71              | C               | ASN  | 0    |
| <br>А     | ASP  | OD2               | 63              | С               | CYS  | 0    |
| А         | ASP  | OD2               | 63              | С               | CYS  | 0    |
| А         | HIS  | NE2               | 63              | С               | CYS  | 0    |
| А         | HIS  | ND1               | 64              | С               | THR  | 0    |
| А         | HIS  | ND1               | 65              | С               | TRP  | 0    |
| <br>А     | HIS  | NE2               | 65              | С               | TRP  | 0    |
| <br>А     | HIS  | NE2               | 68              | С               | VAL  | 0    |
| А         | LYS  | NZ                | 65              | С               | TRP  | 0    |
| <br>А     | LYS  | NZ                | 66              | С               | PHE  | 0    |

| POS | CHAIN | RES | ATOM | POS | CHAIN | RES | ATOM | Dd-a |
|-----|-------|-----|------|-----|-------|-----|------|------|
| 62  | А     | SER | OG   | 72  | С     | PRO | 0    | 3.18 |
| 86  | А     | ASP | OD2  | 71  | С     | ASN | 0    | 3.46 |
| 86  | А     | ASP | OD2  | 71  | С     | ASN | 0    | 3.46 |
| 110 | А     | ASP | OD2  | 63  | С     | CYS | 0    | 2.78 |
| 110 | А     | ASP | OD2  | 63  | С     | CYS | 0    | 2.78 |
| 134 | А     | HIS | NE2  | 63  | С     | CYS | 0    | 3.19 |
| 134 | А     | HIS | ND1  | 64  | С     | THR | 0    | 3.17 |
| 134 | А     | HIS | ND1  | 65  | С     | TRP | 0    | 2.68 |
| 134 | А     | HIS | NE2  | 65  | С     | TRP | 0    | 2.05 |
| 134 | А     | HIS | NE2  | 68  | С     | VAL | 0    | 3.08 |
| 159 | А     | LYS | NZ   | 65  | С     | TRP | 0    | 3.4  |
| 159 | А     | LYS | NZ   | 66  | С     | PHE | 0    | 3.37 |
| 207 | А     | GLN | OE1  | 53  | С     | GLN | 0    | 2.01 |
| 207 | А     | GLN | OE1  | 53  | С     | GLN | 0    | 2.01 |
| 331 | Α     | ASN | ND2  | 1   | В     | HIS | 0    | 2.33 |
| 331 | Α     | ASN | ND2  | 1   | В     | HIS | 0    | 2.33 |
| 567 | Α     | THR | Ν    | 140 | С     | GLU | OE1  | 3.34 |
| 567 | Α     | THR | Ν    | 140 | С     | GLU | OE2  | 1.63 |
| 568 | Α     | MET | Ν    | 140 | С     | GLU | OE2  | 3    |
| 4   | В     | GLY | Ν    | 301 | А     | TYR | ОН   | 3.4  |
| 11  | В     | GLY | Ν    | 93  | С     | GLN | NE2  | 2.59 |
| 16  | В     | HIS | NE2  | 43  | С     | GLN | 0    | 2.5  |
| 21  | В     | ARG | Ν    | 39  | С     | TYR | ОН   | 3.03 |
| 21  | В     | ARG | Ν    | 43  | С     | GLN | OE1  | 2.25 |
| 21  | В     | ARG | Ν    | 43  | С     | GLN | NE2  | 2.89 |
| 36  | С     | ASP | OD1  | 8   | В     | PRO | 0    | 3.26 |
| 36  | С     | ASP | OD1  | 8   | В     | PRO | 0    | 3.26 |
| 39  | С     | TYR | ОН   | 6   | В     | ASP | 0    | 1.86 |
| 40  | С     | SER | OG   | 10  | В     | PRO | 0    | 2.06 |
| 42  | С     | ARG | NE   | 21  | В     | ARG | 0    | 2.91 |
| 43  | С     | GLN | NE2  | 6   | В     | ASP | 0    | 3.34 |
| 43  | С     | GLN | NE2  | 6   | В     | ASP | 0    | 3.34 |

| 43  | С     | GLN  | OE1               | 21              | В                | ARG  | 0    | 3.09 |
|-----|-------|------|-------------------|-----------------|------------------|------|------|------|
| 43  | С     | GLN  | OE1               | 21              | В                | ARG  | 0    | 3.09 |
| 43  | С     | GLN  | OE1               | 21              | В                | ARG  | ОХТ  | 3.19 |
| 43  | С     | GLN  | OE1               | 21              | В                | ARG  | ОХТ  | 3.19 |
| 65  | С     | TRP  | Ν                 | 134             | А                | HIS  | NE2  | 2.92 |
| 66  | С     | PHE  | Ν                 | 134             | А                | HIS  | ND1  | 3.36 |
| 116 | С     | ASN  | ND2               | 544             | А                | GLY  | 0    | 2.47 |
| 116 | С     | ASN  | ND2               | 544             | А                | GLY  | 0    | 2.47 |
| 140 | С     | GLU  | OE1               | 565             | А                | ASP  | 0    | 3.12 |
| 140 | С     | GLU  | OE1               | 565             | А                | ASP  | 0    | 3.12 |
| 140 | С     | GLU  | OE2               | 565             | А                | ASP  | 0    | 3.5  |
| 140 | С     | GLU  | OE2               | 565             | А                | ASP  | 0    | 3.5  |
|     |       |      | þ                 | fter Simulatio  | n                |      |      |      |
|     |       | Prot | tein-Protein Mair | n Chain-Side Cl | nain Hydrogen Bo | onds |      |      |
|     | DON   | IOR  |                   |                 | ACCEI            | PTOR |      |      |
| POS | CHAIN | RES  | ATOM              | POS             | CHAIN            | RES  | ATOM | Dd-a |
| 185 | А     | ARG  | NH2               | 52              | С                | LEU  | 0    | 3.36 |
| 185 | А     | ARG  | NH2               | 52              | С                | LEU  | 0    | 3.36 |
| 303 | А     | TRP  | NE1               | 1               | В                | HIS  | 0    | 3.06 |
| 303 | А     | TRP  | NE1               | 4               | В                | GLY  | 0    | 3.00 |
| 331 | Α     | ASN  | ND2               | 2               | В                | VAL  | 0    | 2.97 |
| 331 | Α     | ASN  | ND2               | 2               | В                | VAL  | 0    | 2.97 |
| 382 | А     | CYS  | SG                | 15              | В                | LYS  | 0    | 3.90 |
| 544 | А     | GLY  | Ν                 | 116             | С                | ASN  | ND2  | 3.43 |
| 567 | Α     | THR  | N                 | 140             | С                | GLU  | OE1  | 3.10 |
| 567 | Α     | THR  | N                 | 140             | С                | GLU  | OE2  | 2.91 |
| 568 | Α     | MET  | Ν                 | 140             | С                | GLU  | OE1  | 2.94 |
| 1   | В     | HIS  | Ν                 | 334             | А                | GLU  | OE1  | 3.06 |
| 1   | В     | HIS  | Ν                 | 334             | А                | GLU  | OE2  | 3.38 |
| 1   | В     | HIS  | Ν                 | 358             | А                | GLU  | OE2  | 2.94 |
| 2   | В     | VAL  | Ν                 | 358             | А                | GLU  | OE2  | 3.43 |
| 6   | В     | ASP  | Ν                 | 279             | А                | TYR  | ОН   | 2.73 |
| 53  | С     | GLN  | NE2               | 183             | А                | PHE  | 0    | 2.84 |
| 53  | С     | GLN  | NE2               | 183             | А                | PHE  | 0    | 2.84 |
| 53  | С     | GLN  | OE1               | 184             | А                | ASN  | 0    | 3.07 |
| 53  | С     | GLN  | OE1               | 184             | А                | ASN  | 0    | 3.07 |

Pos, Position; Res, Residue; Dd-a, Distance between donor atom and acceptor atom; Red colored residues are hot residues; Green color indicates sustained bonds after simulation; Bold residues are sustained residues after simulation.

 Table S 6b: Protein-Protein Side Chain-Side Chain Hydrogen Bonds from complex 1

|     |       |      | В                 | efore Simulatio | on              |      |      |      |
|-----|-------|------|-------------------|-----------------|-----------------|------|------|------|
|     |       | Prot | tein-Protein Side | Chain-Side Ch   | ain Hydrogen Bo | nds  |      |      |
|     | DON   | IOR  |                   |                 | ACCEI           | PTOR |      |      |
| POS | CHAIN | RES  | ATOM              | POS             | CHAIN           | RES  | ATOM | Dd-a |
| 207 | А     | GLN  | OE1               | 53              | С               | GLN  | NE2  | 2.83 |
| 207 | А     | GLN  | OE1               | 53              | С               | GLN  | NE2  | 2.83 |
| 230 | А     | ARG  | NH2               | 56              | С               | ASP  | OD2  | 2.5  |
| 230 | Α     | ARG  | NH2               | 56              | С               | ASP  | OD2  | 2.5  |
| 231 | А     | GLU  | OE1               | 53              | С               | GLN  | OE1  | 3.09 |
| 231 | А     | GLU  | OE1               | 53              | С               | GLN  | OE1  | 3.09 |
| 231 | А     | GLU  | OE1               | 53              | С               | GLN  | NE2  | 2.7  |
| 231 | А     | GLU  | OE1               | 53              | С               | GLN  | NE2  | 2.7  |
| 231 | А     | GLU  | OE2               | 53              | С               | GLN  | OE1  | 1.69 |
| 231 | А     | GLU  | OE2               | 53              | С               | GLN  | OE1  | 1.69 |
| 231 | А     | GLU  | OE2               | 53              | С               | GLN  | NE2  | 2.24 |
| 231 | А     | GLU  | OE2               | 53              | С               | GLN  | NE2  | 2.24 |
| 279 | А     | TYR  | ОН                | 6               | В               | ASP  | OD1  | 3.34 |
| 279 | А     | TYR  | ОН                | 6               | В               | ASP  | OD2  | 3.15 |
| 358 | А     | GLU  | OE1               | 1               | В               | HIS  | ND1  | 3.06 |
| 358 | А     | GLU  | OE1               | 1               | В               | HIS  | ND1  | 3.06 |
| 522 | А     | ARG  | NH1               | 117             | С               | GLU  | OE1  | 2.98 |
| 522 | А     | ARG  | NH1               | 117             | С               | GLU  | OE1  | 2.98 |
| 546 | А     | GLU  | OE2               | 116             | С               | ASN  | ND2  | 3.28 |
| 546 | А     | GLU  | OE2               | 116             | С               | ASN  | ND2  | 3.28 |
| 567 | Α     | THR  | OG1               | 140             | С               | GLU  | OE1  | 2.36 |
| 567 | А     | THR  | OG1               | 140             | С               | GLU  | OE2  | 2.27 |
| 1   | В     | HIS  | ND1               | 358             | А               | GLU  | OE1  | 3.06 |
| 15  | В     | LYS  | NZ                | 383             | А               | ASN  | OD1  | 2.99 |
| 15  | В     | LYS  | NZ                | 383             | А               | ASN  | ND2  | 2.63 |
| 21  | В     | ARG  | NH2               | 231             | А               | GLU  | OE1  | 2.1  |
| 21  | В     | ARG  | NH2               | 231             | А               | GLU  | OE1  | 2.1  |
| 21  | В     | ARG  | NH1               | 279             | А               | TYR  | ОН   | 3.38 |
| 21  | В     | ARG  | NH1               | 279             | А               | TYR  | ОН   | 3.38 |
| 53  | С     | GLN  | NE2               | 207             | А               | GLN  | OE1  | 2.83 |
| 53  | С     | GLN  | NE2               | 207             | А               | GLN  | OE1  | 2.83 |
| 53  | С     | GLN  | OE1               | 231             | А               | GLU  | OE1  | 3.09 |
| 53  | С     | GLN  | OE1               | 231             | А               | GLU  | OE1  | 3.09 |

| 53  | С | GLN | OE1 | 231 | А | GLU | OE2 | 1.69 |
|-----|---|-----|-----|-----|---|-----|-----|------|
| 53  | С | GLN | OE1 | 231 | А | GLU | OE2 | 1.69 |
| 53  | С | GLN | NE2 | 231 | А | GLU | OE1 | 2.7  |
| 53  | С | GLN | NE2 | 231 | А | GLU | OE1 | 2.7  |
| 53  | С | GLN | NE2 | 231 | А | GLU | OE2 | 2.24 |
| 53  | С | GLN | NE2 | 231 | А | GLU | OE2 | 2.24 |
| 113 | С | THR | OG1 | 546 | А | GLU | OE1 | 3.48 |
| 116 | С | ASN | ND2 | 546 | А | GLU | OE2 | 3.28 |
| 116 | С | ASN | ND2 | 546 | А | GLU | OE2 | 3.28 |
| 116 | С | ASN | OD1 | 568 | А | MET | SD  | 1.15 |
| 116 | С | ASN | OD1 | 568 | А | MET | SD  | 1.15 |
| 116 | С | ASN | ND2 | 568 | А | MET | SD  | 2.66 |
| 116 | С | ASN | ND2 | 568 | А | MET | SD  | 2.66 |

|     |       |     | A                 | After Simulatio | n               |      |      |      |
|-----|-------|-----|-------------------|-----------------|-----------------|------|------|------|
|     |       | Pro | tein-Protein Side | Chain-Side Ch   | ain Hydrogen Bo | nds  |      |      |
|     | DON   | IOR |                   |                 | ACCE            | PTOR |      |      |
| POS | CHAIN | RES | ATOM              | POS             | CHAIN           | RES  | ΑΤΟΜ | Dd-a |
| 209 | А     | ASN | ND2               | 50              | С               | ASN  | OD1  | 2.83 |
| 209 | А     | ASN | ND2               | 50              | С               | ASN  | OD1  | 2.83 |
| 230 | Α     | ARG | NH2               | 6               | В               | ASP  | OD1  | 3.44 |
| 230 | А     | ARG | NH2               | 6               | В               | ASP  | OD1  | 3.44 |
| 406 | Α     | TYR | ОН                | 16              | В               | HIS  | NE2  | 2.78 |
| 543 | А     | LYS | NZ                | 117             | С               | GLU  | OE1  | 3.17 |
| 543 | А     | LYS | NZ                | 117             | С               | GLU  | OE2  | 3.37 |
| 567 | Α     | THR | 0G1               | 140             | С               | GLU  | OE2  | 2.85 |
| 16  | В     | HIS | NE2               | 406             | А               | TYR  | ОН   | 2.78 |
| 50  | С     | ASN | OD1               | 209             | А               | ASN  | ND2  | 2.83 |
| 50  | С     | ASN | OD1               | 209             | А               | ASN  | ND2  | 2.83 |

Pos, Position; Res, Residue; Dd-a, Distance between donor atom and acceptor atom; Red colored residues are hot residues; Green color indicates sustained bonds after simulation; Bold residues are sustained residues after simulation.

Table S6C: Protein-Protein Hydrophobic Interactions from complex 1

|          | Before Simulation                        |       |          |         |       |  |  |  |  |  |  |
|----------|------------------------------------------|-------|----------|---------|-------|--|--|--|--|--|--|
|          | Protein-Protein Hydrophobic Interactions |       |          |         |       |  |  |  |  |  |  |
| Position | Residue                                  | Chain | Position | Residue | Chain |  |  |  |  |  |  |
| 8        | PRO                                      | В     | 39       | TYR     | С     |  |  |  |  |  |  |
| 9        | PRO                                      | В     | 31       | LEU     | С     |  |  |  |  |  |  |
| 88       | TYR                                      | А     | 77       | ILE     | С     |  |  |  |  |  |  |
| 183      | PHE                                      | Α     | 59       | LEU     | С     |  |  |  |  |  |  |

| 183      | PHE     | А             | 65               | TRP     | С     |
|----------|---------|---------------|------------------|---------|-------|
| 183      | PHE     | А             | 66               | PHE     | С     |
| 301      | TYR     | А             | 2                | VAL     | В     |
| 303      | TRP     | Α             | 19               | PRO     | В     |
| 354      | PHE     | А             | 2                | VAL     | В     |
| 380      | TYR     | А             | 2                | VAL     | В     |
| 404      | LEU     | А             | 14               | PRO     | В     |
| 426      | ILE     | А             | 14               | PRO     | В     |
| 428      | LEU     | Α             | 14               | PRO     | В     |
| 568      | MET     | Α             | 139              | PRO     | С     |
| 569      | LEU     | А             | 137              | PHE     | С     |
| 588      | ALA     | А             | 137              | PHE     | С     |
| 591      | ALA     | А             | 137              | PHE     | С     |
|          |         | After Sin     | nulation         |         |       |
|          | Protein | -Protein Hydr | ophobic Interact | ions    |       |
| Position | Residue | Chain         | Position         | Residue | Chain |
| 183      | PHE     | Α             | 59               | LEU     | С     |
| 303      | TRP     | Α             | 19               | PRO     | В     |
| 356      | ALA     | А             | 2                | VAL     | В     |
| 380      | TYR     | А             | 14               | PRO     | В     |
| 380      | TYR     | А             | 2                | VAL     | В     |
| 402      | ILE     | А             | 14               | PRO     | В     |
| 428      | LEU     | Α             | 14               | PRO     | В     |
| 568      | MET     | Α             | 139              | PRO     | С     |

Red colored residues are hot residues; Green color indicates sustain bond after simulation.

### Table S6D: Protein-Protein Ionic Interactions from complex 1

|          |                                    | Before Si | mulation |         |       |  |  |  |  |  |  |  |
|----------|------------------------------------|-----------|----------|---------|-------|--|--|--|--|--|--|--|
|          | Protein-Protein Ionic Interactions |           |          |         |       |  |  |  |  |  |  |  |
| Position | Residue                            | Chain     | Position | Residue | Chain |  |  |  |  |  |  |  |
| 230      | ARG                                | А         | 56       | ASP     | С     |  |  |  |  |  |  |  |
| 230      | ARG                                | Α         | 6        | ASP     | В     |  |  |  |  |  |  |  |
| 231      | GLU                                | А         | 21       | ARG     | В     |  |  |  |  |  |  |  |
| 231      | GLU                                | А         | 42       | ARG     | C     |  |  |  |  |  |  |  |
| 253      | ASP                                | А         | 21       | ARG     | В     |  |  |  |  |  |  |  |
| 304      | ARG                                | А         | 6        | ASP     | В     |  |  |  |  |  |  |  |
| 334      | GLU                                | Α         | 1        | HIS     | В     |  |  |  |  |  |  |  |
| 358      | GLU                                | А         | 1        | HIS     | В     |  |  |  |  |  |  |  |
| 358      | GLU                                | А         | 15       | LYS     | В     |  |  |  |  |  |  |  |

| 407 | GLU | А | 15  | LYS | В |
|-----|-----|---|-----|-----|---|
| 522 | ARG | А | 117 | GLU | С |
| 543 | LYS | Α | 140 | GLU | С |
| 565 | ASP | Α | 164 | LYS | С |

|          |         | After Sir         | nulation          |         |       |
|----------|---------|-------------------|-------------------|---------|-------|
|          |         | Protein-Protein I | onic Interactions |         |       |
| Position | Residue | Chain             | Position          | Residue | Chain |
| 21       | ARG     | В                 | 46                | LYS     | С     |
| 185      | ARG     | А                 | 47                | ASP     | С     |
| 230      | ARG     | Α                 | 6                 | ASP     | В     |
| 231      | GLU     | А                 | 21                | ARG     | В     |
| 304      | ARG     | А                 | 17                | ASP     | В     |
| 334      | GLU     | Α                 | 1                 | HIS     | В     |
| 334      | GLU     | А                 | 16                | HIS     | В     |
| 543      | LYS     | Α                 | 117               | GLU     | С     |
| 565      | ASP     | Α                 | 164               | LYS     | С     |

Red colored residues are hot residues; Green color indicates sustained bonds after simulation; Bold residues are sustained residues after simulation.

 Table S6E: Cation-Pi Interactions within 6 Angstroms from complex 1.

|          |         |       | Before Sir         | mulation       |       |               |       |
|----------|---------|-------|--------------------|----------------|-------|---------------|-------|
|          |         | Cati  | on-Pi Interactions | within 6 Angst | roms  |               |       |
| Position | Residue | Chain | Position           | Residue        | Chain | D (cation-pi) | Angle |
| 66       | PHE     | С     | 159                | LYS            | А     | 4.06          | 121.5 |
| 279      | TYR     | А     | 21                 | ARG            | В     | 5.75          | 75.47 |
|          |         |       | After Sim          | nulation       |       |               |       |
|          |         | Cati  | on-Pi Interactions | within 6 Angst | roms  |               |       |
| Position | Residue | Chain | Position           | Residue        | Chain | D (cation-pi) | Angle |
| 66       | PHE     | С     | 138                | ARG            | А     | 4.21          | 17.57 |
| 406      | TYR     | Α     | 15                 | LYS            | В     | 5.96          | 148.0 |

D (cation-pi), Distance between two chains; Red colored residues are hot residues; Bold residues are sustained residues after simulation.

|                                            |                                      |                                        | Before S                                                                                | imulation                                                                   |                               |                         |       |
|--------------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|-------------------------|-------|
|                                            |                                      | Pro                                    | otein-Protein Aroma                                                                     | itic-Sulphur Inte                                                           | ractions                      |                         |       |
|                                            |                                      | NO PROTEIN-                            | PROTEIN AROMATI                                                                         | C-SULPHUR INTE                                                              | ERACTIONS FOU                 | ND                      |       |
|                                            |                                      |                                        | After Si                                                                                | mulation                                                                    |                               |                         |       |
|                                            |                                      | Pro                                    | otein-Protein Aroma                                                                     | tic-Sulphur Inte                                                            | ractions                      |                         |       |
| Position                                   | Residue                              | Chain                                  | Position                                                                                | Residue                                                                     | Chain                         | D(Centroid-<br>Sulphur) | Angle |
| 137                                        | PHE                                  | С                                      | 568                                                                                     | MET                                                                         | А                             | 5.10                    | 52.38 |
| ble S6G <u>: Protein-P</u>                 | rotein Main Cha                      | in-Main Chain<br>Protein-<br>No Protei | Hydrogen Bonds fro<br>Before S<br>Protein Main Chain<br>n-Protein Main Chai<br>After Si | om complex 2<br>imulation<br>-Main Chain Hyd<br>in-Main Chain H<br>mulation | drogen Bonds<br>ydrogen Bonds |                         |       |
|                                            |                                      | Protein-                               | Protein Main Chain                                                                      | -Main Chain Hyd                                                             | drogen Bonds                  |                         |       |
|                                            | DO                                   | NOR                                    |                                                                                         |                                                                             | ACCEPTOR                      |                         |       |
| POS                                        | CHAIN                                | RES                                    | ATOM P                                                                                  | OS CHAI                                                                     | IN RES                        | ATOM                    | Dd-a  |
| 164                                        | С                                    | LYS                                    | N 5                                                                                     | 67 A                                                                        | THR                           | 0                       | 3.11  |
| s, Position; Res, Re<br>ble S6H: Protein-P | esidue; Dd-a, Dis<br>rotein Main Cha | tance betwee                           | n donor atom and ac<br>Hydrogen Bonds fron<br><b>Before S</b>                           | cceptor atom; Re<br>m complex 2<br>imulation                                | ed colored residu             | ues are hot residu      | es.   |
|                                            |                                      | Protein                                | -Protein Main Chain                                                                     | -Side Chain Hyd                                                             | lrogen Bonds                  |                         |       |
|                                            | DO                                   | NOR                                    |                                                                                         |                                                                             | ACCEPTOR                      |                         |       |
| POS                                        | CHAIN                                | RES                                    | ATOM P                                                                                  | OS CHA                                                                      | IN RES                        | ΑΤΟΜ                    | Dd-a  |
| 62                                         | А                                    | SER                                    | OG                                                                                      | 72 C                                                                        | PRO                           | 0                       | 3.18  |

| 62  | А | SER | OG  | 72 | С | PRO | 0 | 3.18 |
|-----|---|-----|-----|----|---|-----|---|------|
| 86  | А | ASP | OD2 | 71 | С | ASN | 0 | 3.46 |
| 86  | А | ASP | OD2 | 71 | С | ASN | 0 | 3.46 |
| 110 | А | ASP | OD2 | 63 | С | CYS | 0 | 2.78 |
| 110 | А | ASP | OD2 | 63 | С | CYS | 0 | 2.78 |
| 134 | А | HIS | NE2 | 63 | С | CYS | 0 | 3.19 |
| 134 | А | HIS | ND1 | 64 | С | THR | 0 | 3.17 |
| 134 | А | HIS | ND1 | 65 | С | TRP | 0 | 2.68 |
| 134 | А | HIS | NE2 | 65 | С | TRP | 0 | 2.05 |
| 134 | А | HIS | NE2 | 68 | С | VAL | 0 | 3.08 |
| 159 | А | LYS | NZ  | 65 | С | TRP | 0 | 3.4  |

|     |   |     | A   | fter Simulatio | n |     |     |      |
|-----|---|-----|-----|----------------|---|-----|-----|------|
| 140 | С | GLU | OE2 | 565            | Α | ASP | 0   | 3.5  |
| 140 | С | GLU | OE2 | 565            | А | ASP | 0   | 3.5  |
| 140 | С | GLU | OE1 | 565            | А | ASP | 0   | 3.12 |
| 140 | С | GLU | OE1 | 565            | А | ASP | 0   | 3.12 |
| 116 | С | ASN | ND2 | 544            | А | GLY | 0   | 2.47 |
| 116 | С | ASN | ND2 | 544            | А | GLY | 0   | 2.47 |
| 66  | С | PHE | N   | 134            | А | HIS | ND1 | 3.36 |
| 65  | С | TRP | N   | 134            | А | HIS | NE2 | 2.92 |
| 568 | А | MET | Ν   | 140            | С | GLU | OE2 | 3    |
| 567 | А | THR | Ν   | 140            | С | GLU | OE2 | 1.63 |
| 567 | А | THR | N   | 140            | С | GLU | OE1 | 3.34 |
| 207 | Α | GLN | OE1 | 53             | С | GLN | 0   | 2.01 |
| 207 | A | GLN | OE1 | 53             | С | GLN | 0   | 2.01 |
| 159 | Α | LYS | NZ  | 66             | С | PHE | 0   | 3.37 |

|     |       | Protein | -Protein Main | Chain-Side C | Chain Hydrogen | Bonds |      |      |
|-----|-------|---------|---------------|--------------|----------------|-------|------|------|
|     | DON   | IOR     |               |              | ACCEI          | PTOR  |      |      |
| POS | CHAIN | RES     | ATOM          | POS          | CHAIN          | RES   | ATOM | Dd-a |
| 522 | А     | ARG     | NE            | 114          | С              | ILE   | 0    | 3.4  |
| 522 | А     | ARG     | NH2           | 115          | С              | PRO   | 0    | 3.02 |
| 522 | А     | ARG     | NH2           | 115          | С              | PRO   | 0    | 3.02 |
| 522 | А     | ARG     | NH1           | 135          | С              | THR   | 0    | 3    |
| 522 | А     | ARG     | NH1           | 135          | С              | THR   | 0    | 3    |
| 522 | А     | ARG     | NH1           | 137          | C              | PHE   | 0    | 3.04 |
| 522 | А     | ARG     | NH1           | 137          | C              | PHE   | 0    | 3.04 |
| 522 | А     | ARG     | NH2           | 137          | С              | PHE   | 0    | 3.44 |
| 522 | А     | ARG     | NH2           | 137          | C              | PHE   | 0    | 3.44 |
| 50  | С     | ASN     | Ν             | 231          | А              | GLU   | OE2  | 2.94 |
| 137 | С     | PHE     | Ν             | 546          | А              | GLU   | OE2  | 2.91 |
| 161 | С     | SER     | OG            | 569          | А              | LEU   | 0    | 3.47 |
| 161 | С     | SER     | N             | 570          | А              | HIS   | ND1  | 3.06 |

Pos, Position; Res, Residue; Dd-a, Distance between donor atom and acceptor atom; Red colored residues are hot residues.

 Table S6I: Protein-Protein Side Chain-Side Chain Hydrogen Bonds from complex 2

|     |       |     | B                 | efore Simulati  | on               |      |      |      |
|-----|-------|-----|-------------------|-----------------|------------------|------|------|------|
|     |       | Pro | tein-Protein Side | e Chain-Side Ch | nain Hydrogen Bo | nds  |      |      |
|     | DON   | OR  |                   |                 | ACCEI            | PTOR |      |      |
| POS | CHAIN | RES | АТОМ              | POS             | CHAIN            | RES  | ATOM | Dd-a |

|     | DO     | Prot | ein-Protein Side | e Chain-Side Cha | in Hydrogen B<br>ACCI | onds<br>EPTOR |     |      |
|-----|--------|------|------------------|------------------|-----------------------|---------------|-----|------|
|     |        |      |                  | After Simulation | I                     |               |     |      |
| 116 | С      | ASN  | ND2              | 568              | Α                     | MET           | SD  | 2.66 |
| 116 | C      | ASN  | ND2              | 568              | A                     | MET           | SD  | 2.66 |
| 116 | с<br>С | ASN  | OD1              | 568              | A                     | MET           | SD  | 1 1  |
| 116 | C      | ASIN | 001              | 540              | A<br>                 | GLU           | 0E2 | 1 11 |
| 116 | ر<br>د | ASIN |                  | 540              | A<br>                 | GLU           | 052 | 3.20 |
| 115 | с<br>С | IHK  | 001              | 540              | A                     | GLU           | 052 | 3.48 |
| 53  | د<br>  | GLN  | NEZ              | 231              | A                     | GLU           | 0E2 | 2.24 |
| 53  | C      | GLN  | NE2              | 231              | A                     | GLU           | 0E2 | 2.24 |
| 53  | C      | GLN  | NE2              | 231              | A .                   | GLU           | OE1 | 2.7  |
| 53  | C      | GLN  | NE2              | 231              | А                     | GLU           | OE1 | 2.7  |
| 53  | С      | GLN  | OE1              | 231              | А                     | GLU           | OE2 | 1.69 |
| 53  | С      | GLN  | OE1              | 231              | А                     | GLU           | OE2 | 1.69 |
| 53  | С      | GLN  | OE1              | 231              | А                     | GLU           | OE1 | 3.09 |
| 53  | С      | GLN  | OE1              | 231              | А                     | GLU           | OE1 | 3.09 |
| 53  | С      | GLN  | NE2              | 207              | А                     | GLN           | OE1 | 2.83 |
| 53  | С      | GLN  | NE2              | 207              | А                     | GLN           | OE1 | 2.83 |
| 567 | Α      | THR  | 0G1              | 140              | С                     | GLU           | OE2 | 2.27 |
| 567 | А      | THR  | OG1              | 140              | С                     | GLU           | OE1 | 2.36 |
| 546 | А      | GLU  | OE2              | 116              | С                     | ASN           | ND2 | 3.28 |
| 546 | А      | GLU  | OE2              | 116              | С                     | ASN           | ND2 | 3.28 |
| 522 | Α      | ARG  | NH1              | 117              | С                     | GLU           | OE1 | 2.98 |
| 522 | Α      | ARG  | NH1              | 117              | С                     | GLU           | OE1 | 2.98 |
| 231 | А      | GLU  | OE2              | 53               | С                     | GLN           | NE2 | 2.24 |
| 231 | A      | GLU  | OE2              | 53               | С                     | GLN           | NE2 | 2.24 |
| 231 | А      | GLU  | OE2              | 53               | С                     | GLN           | OE1 | 1.69 |
| 231 | A      | GLU  | OE2              | 53               | С                     | GLN           | OE1 | 1.69 |
| 231 | Α      | GLU  | OE1              | 53               | С                     | GLN           | NE2 | 2.7  |
| 231 | Α      | GLU  | OE1              | 53               | С                     | GLN           | NE2 | 2.7  |
| 231 | Α      | GLU  | OE1              | 53               | С                     | GLN           | OE1 | 3.09 |
| 231 | Α      | GLU  | OE1              | 53               | С                     | GLN           | OE1 | 3.09 |
| 230 | Α      | ARG  | NH2              | 56               | С                     | ASP           | OD2 | 2.5  |
| 230 | A      | ARG  | NH2              | 56               | С                     | ASP           | OD2 | 2.5  |
| 207 | А      | GLN  | OE1              | 53               | С                     | GLN           | NE2 | 2.83 |

| POS | CHAIN | RES | ΑΤΟΜ | POS | CHAIN | RES | ΑΤΟΜ | Dd-a |
|-----|-------|-----|------|-----|-------|-----|------|------|
| 88  | А     | TYR | ОН   | 73  | С     | ASP | OD1  | 2.8  |
| 136 | А     | GLN | OE1  | 61  | С     | ASN | ND2  | 3.13 |
| 136 | А     | GLN | OE1  | 61  | С     | ASN | ND2  | 3.13 |
| 136 | А     | GLN | NE2  | 61  | С     | ASN | ND2  | 3.27 |
| 136 | А     | GLN | NE2  | 61  | С     | ASN | ND2  | 3.27 |
| 138 | А     | ARG | NH1  | 71  | С     | ASN | OD1  | 3.04 |
| 138 | А     | ARG | NH1  | 71  | С     | ASN | OD1  | 3.04 |
| 185 | А     | ARG | NH2  | 50  | С     | ASN | OD1  | 3.37 |
| 185 | А     | ARG | NH2  | 50  | С     | ASN | OD1  | 3.37 |
| 185 | А     | ARG | NH2  | 67  | С     | HIS | ND1  | 2.83 |
| 185 | А     | ARG | NH2  | 67  | С     | HIS | ND1  | 2.83 |
| 231 | Α     | GLU | OE1  | 49  | С     | ASN | ND2  | 3.01 |
| 231 | Α     | GLU | OE1  | 49  | С     | ASN | ND2  | 3.01 |
| 231 | Α     | GLU | OE1  | 50  | С     | ASN | ND2  | 2.99 |
| 231 | Α     | GLU | OE1  | 50  | С     | ASN | ND2  | 2.99 |
| 495 | А     | LYS | NZ   | 93  | С     | GLN | OE1  | 2.85 |
| 496 | А     | ASN | ND2  | 93  | С     | GLN | OE1  | 2.94 |
| 496 | А     | ASN | ND2  | 93  | С     | GLN | OE1  | 2.94 |
| 522 | Α     | ARG | NE   | 116 | С     | ASN | OD1  | 2.69 |
| 522 | Α     | ARG | NH2  | 116 | С     | ASN | OD1  | 3.03 |
| 522 | А     | ARG | NH2  | 116 | С     | ASN | OD1  | 3.03 |
| 567 | Α     | THR | OG1  | 140 | С     | GLU | OE2  | 2.73 |
| 570 | А     | HIS | ND1  | 161 | С     | SER | OG   | 3.44 |
| 49  | С     | ASN | ND2  | 231 | А     | GLU | OE1  | 3.01 |
| 49  | С     | ASN | ND2  | 231 | А     | GLU | OE1  | 3.01 |
| 50  | С     | ASN | ND2  | 231 | А     | GLU | OE1  | 2.99 |
| 50  | С     | ASN | ND2  | 231 | А     | GLU | OE1  | 2.99 |
| 61  | С     | ASN | ND2  | 136 | А     | GLN | OE1  | 3.13 |
| 61  | С     | ASN | ND2  | 136 | А     | GLN | OE1  | 3.13 |
| 61  | С     | ASN | ND2  | 136 | А     | GLN | NE2  | 3.27 |
| 61  | С     | ASN | ND2  | 136 | A     | GLN | NE2  | 3.27 |
| 93  | С     | GLN | OE1  | 496 | A     | ASN | ND2  | 2.94 |
| 93  | С     | GLN | OE1  | 496 | A     | ASN | ND2  | 2.94 |
| 116 | С     | ASN | OD1  | 568 | Α     | MET | SD   | 3.68 |
| 116 | С     | ASN | OD1  | 568 | Α     | MET | SD   | 3.68 |
| 116 | С     | ASN | ND2  | 568 | Α     | MET | SD   | 3.32 |

| 116 | С | ASN | ND2 | 568 | Α | MET | SD  | 3.32 |
|-----|---|-----|-----|-----|---|-----|-----|------|
| 161 | С | SER | OG  | 570 | А | HIS | ND1 | 3.44 |

Pos, Position; Res, Residue; Dd-a, Distance between donor atom and acceptor atom; Red colored residues are hot residues; Green color indicates sustained bonds after simulation; Bold residues are sustained residues after simulation.

 Table S6J: Protein-Protein Hydrophobic Interactions from complex 2

|          |                                          | Before Si | mulation |         |       |  |  |  |  |  |  |
|----------|------------------------------------------|-----------|----------|---------|-------|--|--|--|--|--|--|
|          | Protein-Protein Hydrophobic Interactions |           |          |         |       |  |  |  |  |  |  |
| Position | Residue                                  | Chain     | Position | Residue | Chain |  |  |  |  |  |  |
| 88       | TYR                                      | А         | 77       | ILE     | С     |  |  |  |  |  |  |
| 183      | PHE                                      | А         | 59       | LEU     | С     |  |  |  |  |  |  |
| 183      | PHE                                      | А         | 65       | TRP     | С     |  |  |  |  |  |  |
| 183      | PHE                                      | А         | 66       | PHE     | С     |  |  |  |  |  |  |
| 568      | MET                                      | Α         | 139      | PRO     | С     |  |  |  |  |  |  |
| 569      | LEU                                      | А         | 137      | PHE     | С     |  |  |  |  |  |  |
| 588      | ALA                                      | А         | 137      | PHE     | С     |  |  |  |  |  |  |
| 591      | ALA                                      | А         | 137      | PHE     | С     |  |  |  |  |  |  |
|          |                                          | After Sir | nulation |         |       |  |  |  |  |  |  |

|          | Protein-P | rotein Hydr | ophobic Inter | actions |       |
|----------|-----------|-------------|---------------|---------|-------|
| Position | Residue   | Chain       | Position      | Residue | Chain |
| 183      | PHE       | А           | 66            | PHE     | С     |
| 474      | ILE       | А           | 91            | VAL     | С     |
| 520      | LEU       | А           | 115           | PRO     | С     |
| 568      | MET       | Α           | 137           | PHE     | С     |
| 568      | MET       | А           | 163           | PRO     | С     |

Bold residues are sustained residues after simulation.

Table S6K: Protein-Protein Ionic Interactions from complex 2

|          |                                    | Before Si      | mulation         |         |       |  |  |  |  |  |  |  |
|----------|------------------------------------|----------------|------------------|---------|-------|--|--|--|--|--|--|--|
|          | Protein-Protein Ionic Interactions |                |                  |         |       |  |  |  |  |  |  |  |
| Position | Residue                            | Chain          | Position         | Residue | Chain |  |  |  |  |  |  |  |
| 230      | ARG                                | А              | 56               | ASP     | С     |  |  |  |  |  |  |  |
| 231      | GLU                                | А              | 42               | ARG     | C     |  |  |  |  |  |  |  |
| 522      | ARG                                | А              | 117              | GLU     | C     |  |  |  |  |  |  |  |
| 543      | LYS                                | Α              | 140              | GLU     | C     |  |  |  |  |  |  |  |
| 565      | ASP                                | А              | 164              | LYS     | С     |  |  |  |  |  |  |  |
|          |                                    | After Sir      | nulation         |         |       |  |  |  |  |  |  |  |
|          | Pro                                | tein-Protein I | onic Interaction | s       |       |  |  |  |  |  |  |  |
| Position | Residue                            | Chain          | Position         | Residue | Chair |  |  |  |  |  |  |  |
| 159      | LYS                                | А              | 56               | ASP     | С     |  |  |  |  |  |  |  |
| 543      | LYS                                | Α              | 117              | GLU     | С     |  |  |  |  |  |  |  |

Red coloured residues are hot residues; Bold residues are sustained residues after simulation.

Table S6L: Protein-Protein Cation-Pi Interactions from complex 2

|                                        |         |       | Before Sin         | nulation           |       |              |        |  |  |  |  |
|----------------------------------------|---------|-------|--------------------|--------------------|-------|--------------|--------|--|--|--|--|
| Protein-Protein Cation-Pi Interactions |         |       |                    |                    |       |              |        |  |  |  |  |
| Position                               | Residue | Chain | Position           | Residue            | Chain | D(cation-Pi) | Angle  |  |  |  |  |
| 66                                     | PHE     | С     | 159                | LYS                | А     | 4.06         | 121.59 |  |  |  |  |
|                                        |         |       | After Sim          | ulation            |       |              |        |  |  |  |  |
|                                        |         | Pro   | otein-Protein Cati | on-Pi Interactions | 5     |              |        |  |  |  |  |
| Position                               | Residue | Chain | Position           | Residue            | Chain | D(cation-Pi) | Angle  |  |  |  |  |
| 66                                     | PHE     | С     | 185                | ARG                | Α     | 3.89         | 39.7   |  |  |  |  |

D (cation-pi), Distance between two chains; Red colored residues are hot residues; Bold residues are sustained residues after simulation.

Table S6M: Protein-Protein Aromatic-Aromatic Interactions from complex 2

|          |         |              | Before Sin       | nulation         |            |              |       |
|----------|---------|--------------|------------------|------------------|------------|--------------|-------|
|          |         | Protein-I    | Protein Aromatic | -Aromatic Intera | ctions     |              |       |
|          | NO P    | ROTEIN-PROTI | EIN AROMATIC-A   | ROMATIC INTER    | ACTIONS FO | JND          |       |
|          |         |              | After Sim        | ulation          |            |              |       |
|          |         | Protein-I    | Protein Aromatic | -Aromatic Intera | ctions     |              |       |
| Position | Residue | Chain        | Position         | Residue          | Chain      | D(cation-Pi) | Angle |
| 183      | PHE     | А            | 66               | PHE              | С          | 5.77         | 51.71 |

D(cation-pi): Distance between two chains

Table S6N: Protein-Protein Main Chain-Side Chain Hydrogen Bonds from complex 3

|                | Before Simulation                                    |     |      |     |       |     |      |      |  |  |  |  |  |  |
|----------------|------------------------------------------------------|-----|------|-----|-------|-----|------|------|--|--|--|--|--|--|
|                | Protein-Protein Main Chain-Side Chain Hydrogen Bonds |     |      |     |       |     |      |      |  |  |  |  |  |  |
| DONOR ACCEPTOR |                                                      |     |      |     |       |     |      |      |  |  |  |  |  |  |
| POS            | CHAIN                                                | RES | ATOM | POS | CHAIN | RES | ATOM | Dd-a |  |  |  |  |  |  |
| 331            | Α                                                    | ASN | ND2  | 1   | В     | HIS | 0    | 2.33 |  |  |  |  |  |  |
| 331            | Α                                                    | ASN | ND2  | 1   | В     | HIS | 0    | 2.33 |  |  |  |  |  |  |
| 4              | В                                                    | GLY | Ν    | 301 | А     | TYR | ОН   | 3.4  |  |  |  |  |  |  |
|                |                                                      |     |      |     |       |     |      |      |  |  |  |  |  |  |

After Simulation

|     | Protein-Protein Main Chain-Side Chain Hydrogen Bonds |     |      |     |          |     |      |      |  |  |  |  |  |
|-----|------------------------------------------------------|-----|------|-----|----------|-----|------|------|--|--|--|--|--|
|     | DON                                                  | IOR |      |     | ACCEPTOR |     |      |      |  |  |  |  |  |
| POS | CHAIN                                                | RES | ATOM | POS | CHAIN    | RES | ATOM | Dd-a |  |  |  |  |  |
| 303 | А                                                    | TRP | NE1  | 1   | В        | HIS | 0    | 3.27 |  |  |  |  |  |
| 331 | Α                                                    | ASN | ND2  | 1   | В        | HIS | 0    | 3.47 |  |  |  |  |  |
| 331 | Α                                                    | ASN | ND2  | 1   | В        | HIS | 0    | 3.47 |  |  |  |  |  |
| 331 | А                                                    | ASN | ND2  | 2   | В        | VAL | 0    | 3.08 |  |  |  |  |  |

| 331 | А | ASN | ND2 | 2   | В | VAL | 0   | 3.08 |
|-----|---|-----|-----|-----|---|-----|-----|------|
| 382 | А | CYS | SG  | 14  | В | PRO | 0   | 3.55 |
| 1   | В | HIS | Ν   | 334 | А | GLU | OE1 | 3.38 |
| 1   | В | HIS | Ν   | 334 | А | GLU | OE2 | 3.33 |
| 1   | В | HIS | Ν   | 358 | А | GLU | OE2 | 2.95 |
| 4   | В | GLY | Ν   | 331 | А | ASN | OD1 | 3.41 |
| 5   | В | GLY | Ν   | 301 | А | TYR | ОН  | 2.72 |

Pos, Position; Res, Residue; Dd-a, Distance between donor atom and acceptor atom; Red colored residues are hot residues; Green color indicates sustained bonds after simulation; Bold residues are sustained residues after simulation.

#### Table S60: Protein-Protein Side Chain-Side Chain Hydrogen Bonds from complex 3

|     |       |     | В                 | efore Simulatio | on              |      |      |      |
|-----|-------|-----|-------------------|-----------------|-----------------|------|------|------|
|     |       | Pro | tein-Protein Side | e Chain-Side Ch | ain Hydrogen Bo | onds |      |      |
|     | DON   | IOR |                   |                 | ACCEI           | PTOR |      |      |
| POS | CHAIN | RES | ATOM              | POS             | CHAIN           | RES  | ATOM | Dd-a |
| 279 | А     | TYR | ОН                | 6               | В               | ASP  | OD1  | 3.34 |
| 279 | А     | TYR | ОН                | 6               | В               | ASP  | OD2  | 3.15 |
| 358 | Α     | GLU | OE1               | 1               | В               | HIS  | ND1  | 3.06 |
| 358 | А     | GLU | OE1               | 1               | В               | HIS  | ND1  | 3.06 |
| 1   | В     | HIS | ND1               | 358             | А               | GLU  | OE1  | 3.06 |
| 7   | В     | х   | ОН                | 380             | А               | TYR  | ОН   | 3.07 |
| 15  | В     | LYS | NZ                | 383             | А               | ASN  | OD1  | 2.99 |
| 15  | В     | LYS | NZ                | 383             | А               | ASN  | ND2  | 2.63 |
| 21  | В     | ARG | NH2               | 231             | А               | GLU  | OE1  | 2.1  |
| 21  | В     | ARG | NH2               | 231             | А               | GLU  | OE1  | 2.1  |
| 21  | В     | ARG | NH1               | 279             | А               | TYR  | ОН   | 3.38 |
| 21  | В     | ARG | NH1               | 279             | А               | TYR  | ОН   | 3.38 |

|                | After Simulation                                     |     |      |     |       |     |      |      |  |  |  |  |  |  |
|----------------|------------------------------------------------------|-----|------|-----|-------|-----|------|------|--|--|--|--|--|--|
|                | Protein-Protein Side Chain-Side Chain Hydrogen Bonds |     |      |     |       |     |      |      |  |  |  |  |  |  |
| DONOR ACCEPTOR |                                                      |     |      |     |       |     |      |      |  |  |  |  |  |  |
| POS            | CHAIN                                                | RES | ATOM | POS | CHAIN | RES | ATOM | Dd-a |  |  |  |  |  |  |
| 378            | А                                                    | HIS | NE2  | 7   | В     | Х   | ОН   | 2.83 |  |  |  |  |  |  |
| 7              | В                                                    | х   | ОН   | 378 | А     | HIS | NE2  | 2.83 |  |  |  |  |  |  |

Pos, Position; Res, Residue; Dd-a, Distance between donor atom and acceptor atom; Red colored residues are hot residues; Green color indicates sustained bonds after simulation; Bold residues are sustained residues after simulation.

| Table S6P: Protein-Protein H | Hydrophobic Interactions from co | omplex 3 |
|------------------------------|----------------------------------|----------|
|------------------------------|----------------------------------|----------|

|                                          |         | Before Si | mulation |         |       |  |  |  |  |  |  |  |
|------------------------------------------|---------|-----------|----------|---------|-------|--|--|--|--|--|--|--|
| Protein-Protein Hydrophobic Interactions |         |           |          |         |       |  |  |  |  |  |  |  |
| Position                                 | Residue | Chain     | Position | Residue | Chain |  |  |  |  |  |  |  |
| 301                                      | TYR     | А         | 2        | VAL     | В     |  |  |  |  |  |  |  |
| 303                                      | TRP     | А         | 19       | PRO     | В     |  |  |  |  |  |  |  |

| 354      | PHE              | А             | 2                | VAL     | В     |  |  |  |  |  |  |  |  |
|----------|------------------|---------------|------------------|---------|-------|--|--|--|--|--|--|--|--|
| 380      | TYR              | Α             | 2                | VAL     | В     |  |  |  |  |  |  |  |  |
| 404      | LEU              | Α             | 14               | PRO     | В     |  |  |  |  |  |  |  |  |
| 426      | ILE              | А             | 14               | PRO     | В     |  |  |  |  |  |  |  |  |
| 428      | LEU              | А             | 14               | PRO     | В     |  |  |  |  |  |  |  |  |
|          | After Simulation |               |                  |         |       |  |  |  |  |  |  |  |  |
|          | Protein          | -Protein Hydr | ophobic Interact | ions    |       |  |  |  |  |  |  |  |  |
| Position | Residue          | Chain         | Position         | Residue | Chain |  |  |  |  |  |  |  |  |
| 380      | TYR              | А             | 14               | PRO     | В     |  |  |  |  |  |  |  |  |
| 380      | TYR              | Α             | 2                | VAL     | В     |  |  |  |  |  |  |  |  |
| 402      | ILE              | А             | 12               | ALA     | В     |  |  |  |  |  |  |  |  |
| 404      | LEU              | Α             | 14               | PRO     | В     |  |  |  |  |  |  |  |  |

Red colored residues are hot residues; Green color indicates sustain bond after simulation.

 Table S6Q: Protein-Protein Ionic Interactions from complex 3

| Protein-Protein Ionic Interactions |                                         |   |    |     |   |  |  |  |  |  |  |
|------------------------------------|-----------------------------------------|---|----|-----|---|--|--|--|--|--|--|
| Position                           | Position Residue Chain Position Residue |   |    |     |   |  |  |  |  |  |  |
| 230                                | ARG                                     | Α | 6  | ASP | В |  |  |  |  |  |  |
| 231                                | GLU                                     | А | 21 | ARG | В |  |  |  |  |  |  |
| 253                                | ASP                                     | Α | 21 | ARG | В |  |  |  |  |  |  |
| 304                                | ARG                                     | Α | 6  | ASP | В |  |  |  |  |  |  |
| 334                                | GLU                                     | Α | 1  | HIS | В |  |  |  |  |  |  |
| 358                                | GLU                                     | А | 1  | HIS | В |  |  |  |  |  |  |
| 358                                | GLU                                     | А | 15 | LYS | В |  |  |  |  |  |  |
| 407                                | GLU                                     | Α | 15 | LYS | В |  |  |  |  |  |  |

|          | After Simulation Protein-Protein Ionic Interactions |       |          |         |       |  |  |  |  |  |  |  |  |
|----------|-----------------------------------------------------|-------|----------|---------|-------|--|--|--|--|--|--|--|--|
|          |                                                     |       |          |         |       |  |  |  |  |  |  |  |  |
| Position | Residue                                             | Chain | Position | Residue | Chain |  |  |  |  |  |  |  |  |
| 230      | ARG                                                 | Α     | 6        | ASP     | В     |  |  |  |  |  |  |  |  |
| 304      | ARG                                                 | Α     | 17       | ASP     | В     |  |  |  |  |  |  |  |  |
| 334      | GLU                                                 | Α     | 1        | HIS     | В     |  |  |  |  |  |  |  |  |
| 407      | GLU                                                 | Α     | 16       | HIS     | В     |  |  |  |  |  |  |  |  |

Red colored residues are hot residues; Green color indicates sustained bonds after simulation; Bold residues are sustained residues after simulation.

Table S6R: Protein-Protein Cation-Pi Interactions from complex 3

|          | Before Simulation                      |       |          |         |       |              |       |  |  |  |  |  |  |
|----------|----------------------------------------|-------|----------|---------|-------|--------------|-------|--|--|--|--|--|--|
|          | Protein-Protein Cation-Pi Interactions |       |          |         |       |              |       |  |  |  |  |  |  |
| Position | Residue                                | Chain | Position | Residue | Chain | D(cation-Pi) | Angle |  |  |  |  |  |  |
| 279      | TYR                                    | А     | 21       | ARG     | В     | 5.75         | 75.47 |  |  |  |  |  |  |

#### After Simulation

#### **Protein-Protein Cation-Pi Interactions**

#### NO PROTEIN-PROTEIN CATION-PI INTERACTIONS FOUND

D (cation-pi), Distance between two chain

| Complex Inter. |        | H-Bon | d  | Hydroph                 | nobic | Ionic |         | Cation      | - Pi | Aroma  | tic -  | Aroma  | itic - | Тс | otal |
|----------------|--------|-------|----|-------------------------|-------|-------|---------|-------------|------|--------|--------|--------|--------|----|------|
|                | Bet.   |       |    | Interaction Interaction |       | tion  | Interac | Interaction |      | tic    | Sulpha | ir     |        |    |      |
|                |        |       |    |                         |       |       |         |             |      | Intera | tion   | Intera | ction  |    |      |
|                |        | В.    | А. | В.                      | А.    | В.    | А.      | В.          | А.   | В.     | А.     | В.     | А.     | В. | А.   |
|                |        | MD    | MD | MD                      | MD    | MD    | MD      | MD          | MD   | MD     | MD     | MD     | MD     | MD | MD   |
|                | Xa21   | 15    | 14 | 7                       | 6     | 8     | 5       | 1           | 1    | 0      | 0      | 0      | 0      | 31 | 26   |
|                | +Raxsn |       |    |                         |       |       |         |             |      |        |        |        |        |    |      |
| Xa21           | Xa21   | 60    | 17 | 8                       | 2     | 5     | 3       | 1           | 1    | 0      | 0      | 0      | 1      | 74 | 24   |
| +Raxsn         | +Os    |       |    |                         |       |       |         |             |      |        |        |        |        |    |      |
| +Os            | Raxsn  | 16    | 0  | 2                       | 0     | 0     | 1       | 0           | 0    | 0      | 0      | 0      | 0      | 18 | 1    |
|                | +Os    |       |    |                         |       |       |         |             |      |        |        |        |        |    |      |
| Xa21           | Xa21   | 60    | 52 | 8                       | 5     | 5     | 2       | 1           | 1    | 0      | 1      | 0      | 0      | 74 | 79   |
| +Os            | +Os    |       |    |                         |       |       |         |             |      |        |        |        |        |    |      |
| N-21           | V-21   | 15    | 10 | 7                       | 4     | 0     | 4       | 1           |      |        |        | 0      | 0      | 24 |      |
| XaZT           | XU21   | 15    | 13 | /                       | 4     | ð     | 4       | T           | U    | U      | U      | U      | U      | 31 | 21   |
| +Raxsn         | +Raxsn |       |    |                         |       |       |         |             |      |        |        |        |        |    |      |

Table S6S: Summary of interactions between Xa21, RaxX21-sY and OsSERK2

Inter. Bet., Interactions Between; H-Bond, Hydrogen Bond; B. MD, Before Molecular Dynamics simulation; A. MD, After Molecular Dynamics simulation