# Electronic Supplementary Information

# Highly Dispersed Ruthenium Precursors via Self-Assembly Assist

Synthesis of Uniform Ruthenium Nanoparticles for Superior Hydrogen

### **Evolution Reaction**

Xingyan Liu, <sup>\*</sup><sup>a</sup> Guangmei Jiang, <sup>a</sup> Yuwei Tan, <sup>a</sup> Shuang Luo, <sup>a</sup> Mengmeng Xu, <sup>a</sup> Yiming Jia, <sup>b</sup> Peng Lu, <sup>a</sup> and Youzhou He<sup>\*a</sup>

 <sup>a</sup> College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067. China. E-mail: xyliuctbu@126.com, yzhectbu@163.com
<sup>b</sup> Department of Chemistry "G. Ciamician", University of Bologna, Ravenna Campus, Ravenna, Italy.

## contents

| Materials and Preparation of the Catalysts                  | .3 |
|-------------------------------------------------------------|----|
| Preparation of Ru/CNO by three methods                      | .3 |
| Preparation of Ru/CNO-0,1,5,10,15.                          | .3 |
| Electrochemical measurements                                | .3 |
| Fig. S1 SEM of Ru/CNO by three methods; EDX of precursors   | .4 |
| Fig. S2 LSV of Ru/CNO by different methods and temperatures | .4 |
| Tab. S1 BET of three precursors                             | .4 |

#### Materials and Preparation of the Catalysts

Melamine (99%, CAS: 108-78-1), Cyanuric acid (98%, CAS: 108-80-5),  $RuCl_3 \cdot 3H_2O$  (99%, CAS: 14898-67-0), Nafion (5 wt% in a mixture of lower aliphatic alcohols and water, contains 15-20% water. CAS: 31175-20-9),  $H_2SO_4$  (CAS: 7664-93-9), KOH (CAS: 1310-58-3), 20 wt% Pt/C (CAS: 7440-06-4).

### Preparation of Ru/CNO by three methods

(a) Grinding-calcination method: melamine (200 mg),  $RuCl_3 \cdot 3H_2O$  (10 mg) and cyanuric acid (200 mg) were weighed in a mortar, fully ground, transferred to a quartz boat, and calcined at 550 °C for 4 h with a heating rate of 2 °C min<sup>-1</sup> under a N<sub>2</sub> atmosphere.

(b) Stirring-calcination method: melamine (200 mg) and RuCl<sub>3</sub>·3H<sub>2</sub>O (10 mg) were stirred in distilled water for 1 hour, then cyanuric acid (200 mg) aqueous solution was added and stirred for another hour. Then the turbid reaction solution was filtered and the product was dried at 80 °C, subsequently transferred to quartz boat and calcined at 550 °C for 4 h with a heating rate of 2 °C min<sup>-1</sup> under a N<sub>2</sub> atmosphere.

(c) Hydrothermal-calcination method: melamine (200 mg) and RuCl<sub>3</sub>·3H<sub>2</sub>O (10 mg) were stirred in distilled water for 1 hour, then cyanuric acid (200 mg) aqueous solution was added and stirred for another hour. Then the turbid reaction solution was transferred to a reactor and reacted at 180 °C for 6 hours. After cooling down to room temperature naturally, the turbid reaction solution was filtered and the product was dried at 80 °C, subsequently transferred to quartz boat and calcined at 550 °C for 4 h with a heating rate of 2 °C min<sup>-1</sup> under a N<sub>2</sub> atmosphere.

### Preparation of Ru/CNO-0,1,5,10,15.

Stirring-calcination method: melamine (0.2 g) and RuCl<sub>3</sub>·3H<sub>2</sub>O (0, 1, 5, 10, 15 mg) were dissolved in 40 ml distilled water and stirred for 1 hour at room temperature, then cyanuric acid aqueous solution (0.2 g in 40 ml distilled water) was added and stirred for another hour. Then the turbid reaction solution was filtered and the product was dried at 80 °C, subsequently transferred to quartz boat and calcined at 500 °C, 550 °C, 600 °C for 4 h with a heating rate of 2 °C min<sup>-1</sup> under a N<sub>2</sub> atmosphere.

#### **Electrochemical measurements**

All electrochemical experiments were investigated on a CHI660E electrochemical workstation (Shanghai Chenhua Co., China) with a standard three electrode cell at room temperature. A glassy carbon electrode with coated catalysts was used as the working electrode, a saturated calomel electrode as the reference electrode and a graphite rod was used as the counter electrode. Preparation of working electrode: a certain amount of catalysts (1 mg) were dispersed in an aqueous solution containing water (85  $\mu$ L), ethanol (85  $\mu$ L) and Nafion solution (10 uL) under sonication for about 30 minutes to make it sufficiently dispersed. Subsequently, the obtained uniform catalyst inks (4  $\mu$ L) was dropped onto the glassy carbon electrode (3 mm in

diameter) and dried naturally to form a film. The mass loading was 0.28 mg cm<sup>-2</sup> in 0.5 M  $H_2SO_4$  or 1.0 M KOH unless otherwise noted and the commercial Pt/C electrode was also prepared using the same procedure for comparison.



Fig. S1 Methods of (a) Grinding-calcination. (b) Hydrothermal-calcination. (c) Stirring-calcination.(d) STEM-EDX mapping images of (e) Cl, (f) N, (g) O,and (h) Ru in Ru-CAM precursors.



Fig. S2 (a) Polarization curves of Ru/CNO-10 with different synthesis methods in 0.5 M  $H_2SO_4$ . (b) Polarization curves of Ru/CNO-10 with different calcination temperatures in 0.5 M  $H_2SO_4$ . (c) Overpotentials of Ru/CNO-1,5,10,15 at -10, -20, -50 and -100 mA cm<sup>-2</sup> in 0.5 M  $H_2SO_4$ . (e) Current density differences ( $\Delta j$ = (ja-jc)/2) at 0.10 V as a function of the scan rate for Ru/CNO-0,5,10.

Tab. S1 BET of three precursors

|                  | Grinding    | Hydrothermal             | Stirring    |  |
|------------------|-------------|--------------------------|-------------|--|
| BET Surface Area | 1.9005 m²/g | 2.2364 m <sup>2</sup> /g | 7.9866 m²/g |  |