Supporting Information

Novel Synthesis of Divergent Aryl Imidazoles from Ketones Involving Copper-Catalyzed $\boldsymbol{\alpha}$-Amination and Oxidative C-C Bond Cleavage

 Ling $\mathrm{He}^{* a}$

${ }^{\text {a }}$ Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041(P. R. China). E-mail: heling2012@scu.edu.cn.
${ }^{\mathrm{b}}$ Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.

Table of Contents

1.General information 2
2.Optimization of the reaction conditions 3
3.General procedure for the formation of compound 2 4
4.General procedure for the formation of compound 3 5
5.General procedure for the formation of compound 4 7
6.Mechanistic study 8
7.Crystal data 11
8.NMR Spectra 14

1. General information

All reactions were carried out under air atmosphere, unless otherwise mentioned. Commercially available materials were used as received without further purification. Reactions were monitored by thin-layer chromatography (TLC) carried out on commercial silica gel plates using UV light as a visualizing agent . Commercial silica gel was used for column chromatography. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 400 MHz or 600 MHz spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to Chloroform- $\mathrm{d}(7.26 \mathrm{ppm})$ or $\mathrm{DMSO}-\mathrm{d}_{6}(2.50 \mathrm{ppm})$, and reported as follows; chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$. Chemical shifts of the ${ }^{13} \mathrm{C}$ NMR spectra were measured relative to Chloroform-d $(77.23 \mathrm{ppm})$ or DMSO- $\mathrm{d}_{6}(39.51$ ppm). Mass spectral data were obtained from Bruker Daltonics Data analysis 3.2 mass spectrometer.X-Ray data were collected on a Bruker APEX-II equipped with a CCD area detector using $\mathrm{Mo} / \mathrm{K} \alpha$ radiation. The structures were solved by direct method using SHELXL-97.
2. Optimization of the reaction conditions(Table 1)

Entry	Catalyst	Solvent	nitrogen source	Temp (${ }^{\circ} \mathrm{C}$)	Yield (\%)
1	-	MeOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	60	0
2	CuI	MeOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	60	59
3	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	60	25
4	CuCl	MeOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	60	23
5	CuBr	MeOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	60	40
6	CuI	MeOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	40	trace
7	CuI	MeOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	80	65
8	CuI	MeOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	100	76
9	CuI	$n-\mathrm{BuOH}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	100	39
10	CuI	EtOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	100	47
11	CuI	MeOH	$\mathrm{NH}_{4} \mathrm{OAc}$	100	0

12	CuI	MeOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	100	trace

Reaction conditions: catalyst ($10 \mathrm{~mol} \%$), 1a $(0.37 \mathrm{mmol})$, nitrogen source $(7.4 \mathrm{mmol})$, air, and solvent (2 mL).

First, using propiophenone as the substrate, we investigated the effect of different reaction conditions on the reaction. The alcohol was beneficial to the reaction. As shown in Table 1, methanol was the most effective for the cleavage and the reaction was hardly carried out in ethyl acetate, $\mathrm{MeCN}, \mathrm{DCM}$, dioxane, DMF or DMSO . Besides copper salt, $\mathrm{FeCl}_{2}, \mathrm{Rh}_{2}(\mathrm{OAc})_{2}$, $\mathrm{Ru}(\mathrm{TTP})(\mathrm{CO})$ were employed as promoter for the cleavages of 1 a in methanol. However, only cuprous iodide can obtain moderate to high yield in promote cleavage reaction. In addition, the influence of the ammonium salt as nitrogen source on the α-amination reaction of 1a has been studied using ammonium carbonate, ammonium acetate and ammonium oxalate. Table 1 shows the other optimal reaction conditions include CuI as the catalyst, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ as the nitrogen source, and air as the oxidant at $100^{\circ} \mathrm{C}$ in a sealed tube for $6 \mathrm{~h}($ Table 1 , entry 8$)$.

3. General procedure for the formation of compound 2

General procedure for the formation of compound 2: A 25 ml sealed tube was charged with $\mathrm{CuI}(10 \mathrm{~mol} \%), 1(0.37 \mathrm{mmol})$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(7.4 \mathrm{mmol})$, and $\mathrm{MeOH}\left(2 \mathrm{~mL}\right.$, undried), $\mathrm{H}_{2} \mathrm{O}(0.37 \mathrm{mmol})$, the mixture was stirred at $100^{\circ} \mathrm{C}$ for $6 \sim 24 \mathrm{~h}$. After disappearance of the reactant (monitored by TLC), the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The crude residue was purified by silica gel chromatography using petroleum ether/acetone/triethylamine as eluent to give pure product 2 .

2,5-Dimethyl-4-phenyl-1H-imidazole (2a): White soild, yield: 76%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.68(\mathrm{~s}, 1 \mathrm{H}), \delta 7.55(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $\left.{ }_{6}\right) \delta 142.3,134.8$, 128.9, 128.6, 125.7, 125.4, 13.9, 12.3. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 173.1073, Found 173.1072.

4-(4-Chlorophenyl)-2,5-dimethyl-1H-imidazole (2b): White soild, yield: 56\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.70(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 142.4,134.5,129.7,128.5,127.2$, 113.7, 13.9, 12.1. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 207.0684, Found: 207.0682.

4-(4-Bromophenyl)-2,5-dimethyl-1H-imidazole (2c): White soild, yield: 54\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d) $\delta 11.71(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}$, $4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 142.5,137.3,134.6,131.4,127.8,127.6,118.2,14.0,12.2$. HRMS(ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 251.0178$, Found: 251.0181 .

4-(4-Fluorophenyl)-2,5-dimethyl-1H-imidazole (2d, CCDC 1853653): White soild, yield: $80 \%{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) δ $7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d $) \delta 160.6(\mathrm{~d}, J=241.9$ $\mathrm{Hz}), 142.5,131.9,127.7(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 14.1,12.2$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 191.0979$, Found 191.0973.

4-(2-Fluorophenyl)-2,5-dimethyl-1H-imidazole (2e): White soild, yield: 76\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.49-7.43$ (m, $1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 159.0(\mathrm{~d}, J=245.7$ $\mathrm{Hz}), 143.5,130.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 129.9,128.3(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 124.8,124.3(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=22.7$ $\mathrm{Hz}), 13.9,12.4(\mathrm{~d}, J=3.6 \mathrm{~Hz})$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 191.0979$, Found: 191.0978.

4-(4-(Trifluoromethyl)phenyl)-2,5-dimethyl-1H-imidazole (2f): White soild, yield: 65%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.82$ (s, $1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 142.8,140.5,133.3$, 126.3, 126.0, 125.7(125.72), 125.7(125.69), $125.6\left(\mathrm{q}, J=3.3 \mathrm{~Hz}\right.$), 124.3, 14.2, 11.8. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 241.0947, Found: 241.0947.

4-(3-(Trifluoromethyl)phenyl)-2,5-dimethyl-1H-imidazole (2g): White soild, yield: $57 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.82$ (s, $1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 142.5,136.3,129.7, \quad 129.4,129.1,128.9,128.8,124.4(\mathrm{q}, J=272.3 \mathrm{~Hz}), 121.6,121.5,121.4,121.3,13.7$, 11.7. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 241.0947$, Found: 241.0950.

2,5-Dimethyl-4-(p-tolyl)-1H-imidazole (2h): White soild, yield: $41 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.63(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 142.0,134.4,131.9$, 129.1(129.11), 129.1(129.08), 125.7, 20.9, 13.9, 12.4. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 187.1230, Found: 187.1233 .

4-(4-Methoxyphenyl)-2,5-dimethyl-1H-imidazole (2i): White soild, yield: 39\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 157.6,142.1,127.5,127.3,114.2$, 55.5, 14.1, 12.5. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 203.1179$, Found: 203.1180.

2,5-Dimethyl-4-(thiophen-2-yl)-1H-imidazole (2j): White soild, yield: 42%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.73(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 142.4,127.7(127.68), 127.7(127.65), 122.7$, $120.9(120.86), 120.9(120.85), 13.8,11.4$. HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 179.0637$, Found: 179.0637 .

4-(2,3-Dihydrobenzofuran-5-yl)-2,5-dimethyl-1H-imidazole (2k): White soild, yield: 68%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 11.59(\mathrm{~s}$, $1 \mathrm{H}), \delta 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.22$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d C_{6}) $\delta 158.1,141.9,127.7,125.8,123.1,109.1,71.3,29.7,14.2,12.6$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 215.1179$, Found: 215.1178 .

2,5-Dimethyl-4-(5,6,7,8-tetrahydronaphthalen-2-yl)-1H-imidazole (2l): White soild, yield: 39\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) δ $11.60(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO$\left.\mathrm{d}_{6}\right) \delta 141.9,136.5,133.8,131.9,129.1,126.2,123.2,29.2,28.7,23.1(23.13), 23.1(23.11), 14.0,12.5$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 227.1543$, Found: 227.1538 .

4-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-2,5-dimethyl-1H-imidazole (2m): White soild, yield: 41\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) δ $11.56(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d $\left.{ }_{6}\right) \delta 143.6$, $142.1,141.7,128.6,119.1,117.4,114.5,64.6,64.5,14.2,12.5$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 231.1128, Found: 231.1126 .

2,5-Diethyl-4-phenyl-1H-imidazole (2n): Colourless oil, yield: 24%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.57(\mathrm{~s}, 1 \mathrm{H}), \delta 7.52(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 148.1,134.9,128.8,127.5,126.4,125.8,21.8,19.6,14.7$, 13.3. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 201.1386, Found: 201.1380.

4-Phenyl-2,5-dipropyl-1H-imidazole (2o): Colourless oil, yield: $11 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), \quad \delta 7.52(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) $\delta 147.3,133.9,128.4,127.6,126.8,126.1,30.5,28.2,23.1,22.1,14.0,13.8$. HRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 229.1699$, Found: 229.1700.

2,4,5-Triphenyl-1H-imidazole (2p): White soild, yield: $48 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.73(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 145.9,137.5,135.6,131.5,130.8,129.1(129.12)$, 129.1(129.09), 128.9, 128.7, 128.6, 128.2, 127.5, 126.9, 125.6. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 297.1386$, Found: 297.1388.

4. General procedure for the formation of compound 3

General procedure for the formation of compound 3: A 25 ml sealed tube was charged with CuI ($10 \mathrm{~mol} \%$), Phenylacetone (0.37 mmol), Aldehyde (1.48 mmol), $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(7.4 \mathrm{mmol})$, and $\mathrm{MeOH}\left(2 \mathrm{~mL}\right.$, undried, hydrous methanol), the mixture was stirred at $100^{\circ} \mathrm{C}$ for $6 \sim 24 \mathrm{~h}$. After disappearance of the reactant (monitored by TLC), the reaction mixture was filtered and the filtrate was concentrated under reduced pressure.The crude residue was purified by silica gel chromatography using petroleum ether/ ethyl acetate as eluent to give pure product 3 .

5-Methyl-2,4-diphenyl-1H-imidazole (3a): Yellow solid, yield: 66%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 12.39(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 144.2, 134.7, 131.0, 129.2, 128.9, 128.3, 126.6, 126.3, 125.2, 12.5. HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 235.1230$, Found: 235.1230.

5-Methyl-4-phenyl-2-(p-Tolyl)-1H-imidazole (3b): Yellow solid, yield: 65\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.76(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) δ 145.1, 138.5, 133.0, 129.6, 129.3, 128.6, 127.3, 126.7, 126.6, 125.0, 21.3, 12.6. HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 249.1397$, Found: 249.1386.

2-(4-Methoxyphenyl)-5-methyl-4-phenyl-1H-imidazole (3c): Yellow solid, yield: 74\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.78$ (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) $\delta 159.8,145.3,128.7,128.5,128.4(128.41)$, 128.4(128.35), 126.8, 126.7, 126.4, 123.0, 114.1, 55.3, 12.3. HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 265.1335$, Found: 265.1337.

2-(2-Methoxyphenyl)-5-methyl-4-phenyl-1H-imidazole (3d): Yellow semisolid, yield: 60%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $8.46-8.27(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ $(\mathrm{s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) $\delta 155.5,142.8,133.3,129.2,128.6,128.3,126.5,126.4,121.6,118.2,111.2$, 55.8, 12.9. HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 265.1335$, Found: 265.1337.

2-(Benzo[d][1,3]dioxol-5-yl)-5-methyl-4-phenyl-1H-imidazole (3e): Yellowish solid, yield: $60 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) δ $12.28(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}$, $2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $_{6}$) $\delta 148.1,147.5,143.9,136.3,136.1,128.7,126.4,126.0,125.5,124.2,118.9,109.0$, 105.5, 101.6, 11.8. HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 279.1128$, Found: 279.1130.

N,N-Dimethyl-4-(5-methyl-4-phenyl-1H-imidazol-2-yl)aniline (3f): Yellow solid, yield: 70\%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 7.81$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO-d6) $\delta 150.4,145.2,128.7,126.4,126.3,125.9,119.3,112.4,58.1,8.2$. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 278.1652$, Found: 278.1651.

2-(3,4-Dimethoxyphenyl)-5-methyl-4-phenyl-1H-imidazole (3g): Yellow solid, yield: 52%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.56$ $(\mathrm{m}, 3 \mathrm{H}), 7.4-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) $\delta 149.4,149.3,145.1,132.0,128.6,128.5,127.3,126.7,126.5,123.3,117.2,111.1,108.7,55.9,55.8,14.2$. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 295.1441$, Found: 295.1441.

2-(4-Chlorophenyl)-5-methyl-4-phenyl-1H-imidazole (3h): White solid, yield: 51%. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.81$ (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR

2-(3-Chlorophenyl)-5-methyl-4-phenyl-1H-imidazole (3i): White solid, yield: 64%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.82$ (s, 1H), $7.71(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 143.3,134.8,133.3,132.1,130.8,130.1,128.7(128.69), 128.7(128.66), 127.1,127.0,125.4,123.4,12.2$. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 269.0840$, Found: 269.0843 .

5-Methyl-2-(naphthalen-1-yl)-4-phenyl-1H-imidazole (3j): White solid, yield: 91%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.58$ (dd, $J=$ $6.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=6.4,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H})$, $7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 144.4,133.8,133.3,131.0,129.2,128.6,128.3,127.8,126.8$, 126.7, 126.6, 126.5, 126.1, 126.0, 124.9, 12.4. HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 285.1386$, Found: 285.1390.

5-Methyl-4-phenyl-2-(thiophen-2-yl)-1H-imidazole (3k): Yellow solid, yield: 51%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.54$ (d, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 140.8,133.4,132.7,128.9,128.5,127.7,126.9,126.6,125.5,124.1,12.3$. HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 241.0794, Found: 241.0796.

5-Methyl-4-phenyl-2-propyl-1H-imidazole (31): Yellow semisolid, yield: 40%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.70$ (s, 1H), 7.53 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 147.4,133.6,131.2,128.5,126.5,126.1,30.4,22.1,13.9,12.3$. HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$201.1386, Found: 201.1389.

5-Methyl-4-phenyl-1H-imidazole (3m, CCDC 1882199): Yellowish solid, yield: 78\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 12.07$ ($\mathrm{s}, 1 \mathrm{H}$), $7.60(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}+$ Chloroform-d) $\delta 133.5,133.3,132.2$, 128.3, 126.5, 126.2, 11.4. HRMS (ESI) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 159.0917$, Found: 159.0917.

5. General procedure for the formation of compound 4

General procedure for the formation of compound 4: A 25 ml sealed tube was charged with CuI ($10 \mathrm{~mol} \%$), α-aryl ketone (0.37 $\mathrm{mmol})$, ketone $(1.48 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(7.4 \mathrm{mmol})$, and $\mathrm{MeOH}(2 \mathrm{~mL}$, undried, hydrous methanol $)$, the mixture was stirred at $100^{\circ} \mathrm{C}$ for $6 \sim 24 \mathrm{~h}$. After disappearance of the reactant (monitored by TLC) , the reaction mixture was filtered and the filtrate was concentrated under reduced pressure.The crude residue was purified by silica gel chromatography using petroleum ether/ ethyl acetate as eluent to give pure product.

3-(2,2-Dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole (4a, CCDC 1882198): White solid, yield: $65 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $\delta 11.44(\mathrm{~s}, 1 \mathrm{H}), 8.33-8.26(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) $\delta 165.3,158.5,136.5,135.1,130.1,129.0,128.8(128.84), 128.8(128.78), 126.9,123.2,122.4,121.1$, 112.3, 108.4, 101.8, 25.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 288.1490, Found: 288.1492.

3-(2,2-Dimethyl-5-phenyl-2H-imidazol-4-yl)-2-methyl-1H-indole (4b): White solid, yield: 75\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) δ $11.42(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 164.8,159.8,137.3,135.7,133.7,130.4,128.8,128.4,127.6,121.5,119.8,119.6,119.3,105.9,101.7$, 25.1, 13.1. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 302.1652$, Found: 302.1650.

3-(2,2-Dimethyl-5-phenyl-2H-imidazol-4-yl)-2-phenyl-1H-indole (4c): White solid, yield: 50%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) δ $11.83(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 9 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 164.4,160.0,137.9,136.2,132.2,131.8,129.5,128.4,127.9(127.92), 127.9(127.87), 127.8,127.6,127.3,122.5,120.2$, 119.3, 111.7, 105.6, 101.7, 24.2. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 364.1808, Found: 364.1809.

5-Chloro-3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-2-phenyl-1H-indole (4d): White solid, yield: 74\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\left.\delta 12.05(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 7 \mathrm{H}), 7.08 \mathrm{~m}, 4 \mathrm{H}\right), 1.62(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta 164.2,159.4,139.8,134.7,132.2,131.4,129.4,128.9,128.5,128.3,127.8,127.7,127.2,124.8,122.5,118.4,113.4,105.2,101.9$, 24.2. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 398.1419$, Found: 398.1415 .

5-Bromo-3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole (4e): White solid, yield: 68%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $11.63(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 164.5,157.7,134.8,134.3,129.8,129.7,128.4,128.3,128.2,125.3,124.0,114.0,113.4,107.5,101.6,24.7$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 366.0600$, Found: 366.0601.

6-Fluoro-3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole (4f): White solid, yield: 62%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $11.49(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=8.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta 164.8,159.6(\mathrm{~d}, J=236.5 \mathrm{~Hz}), 136.3(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 134.6,129.9,129.3,128.6,128.5,123.3(\mathrm{~d}, J=3.7 \mathrm{~Hz})$, 123.2, 109.4, 109.1, 108.2, 101.6, $98.2\left(\mathrm{~d}, J=25.1 \mathrm{~Hz}\right.$), 24.9. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 306.1401$, Found: 306.1398.

5-Methoxy-3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole (4g): White solid, yield: 50\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) δ $11.34(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 165.0,158.3,154.8,134.8,131.3,129.8,129.1,128.5(128.54), 128.5(128.49), 127.2,112.7,112.6,107.9$, 104.3, 101.5, 55.6, 25.1. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 318.1601$, Found: 318.1601.

5-Chloro-3-(2,2-dimethyl-5-(p-Tolyl)-2H-imidazol-4-yl)-2-phenyl-1H-indole (4h): White solid, yield: 55\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.07(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 164.2,159.8,139.7,139.3,134.9,131.6,129.5,129.2,128.6(128.56)$, 128.6(128.56), 128.4, 127.9, 127.5, 125.0, 122.6, 118.5, 113.5, 105.6, 101.9, 24.4, 21.0. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 412.1575, Found: 412.1475.

3-(2,2-Dimethyl-5-(p-tolyl)-2H-imidazol-4-yl)-2-methyl-1H-indole (4i): White solid, yield: 50\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) δ $11.39(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 168.0,159.7,139.9,137.0,135.4,130.4,129.1,128.2,127.3,121.2,119.6$, 119.3, 111.1, 105.6, 101.3, 25.0, 21.2, 12.9. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 316.1807, Found: 316.1805.

3-(2-Ethyl-5-phenyl-2-(p-Tolyl)-2H-imidazol-4-yl)-2-methyl-1H-indole (4j): White solid, yield: 52\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.50(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.02$ $(\mathrm{m}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 165.3$, $160.4,138.3,137.3,136.4,135.3,133.0,130.1,128.7,128.5,128.1,127.3,127.2,121.1,119.5,119.0,111.0,107.2,105.3,34.0,20.7$, 12.7, 8.4. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 392.2127$, Found: 392. 2197.

6. Mechanistic study

6.1 Exploration of reaction process

(1)

(2)

(3)

(4)

(5)

(6)

Detection of LC-MS of reaction 6

To understand the reaction for novel imidazole synthesis well, we designed a series of experiments to observe the special effects of some conditions on the imidazole synthesis. The effect of the nitrogen source on the reaction was first investigated. As shown in reaction 1, no reaction occurred in the absence of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$. This result indicates that $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is really a nitrogen source for the reaction and it may decompose into ammonia to form a complex with copper and participates in the catalytic cycle. To confirm this point, ammonia-saturated methanol was used as the reaction solvent (reaction 2). The reaction occurred, but the yield of the corresponding product was only 46%. This lower yield may be due to the fact that only a limited amount of ammonia dissolved in methanol. Subsequently, the copperammonia complex was prepared by the reaction of the copper salt with excess ammonia water and was used in the reaction 3a. The result shows that the product was obtained in 72% yield, which confirmed that the copper-ammonia complex was not only the catalyst of the reaction, but also the nitrogen source. In addition, the effects of air and water on the reaction were also investigated (reactions 3). In the absence of water(anhydrous methanol) or air, no target product was obtained, indicating that water and air are necessary for the reaction. It is suggested that the breaking of C-C bond of propiophenone may be realized by the joint involving of oxygen and water. Further, to confirm the $\alpha-\mathrm{C}-\mathrm{H}$ activation and α-amination in the imidazole formation, α-perdeuterated propiophenone was used as the substrate using deuterated methanol as solvent in the presence of dry air and $\mathrm{D}_{2} \mathrm{O}$, the product was obtained in only 11% yield (reaction 4). The results show that $\mathrm{C}-\mathrm{H}$ activation is a prerequisite for the reaction process.

Referring to the C-C bond cleavage reaction ${ }^{[11,15]}$, during the formation of imidazoles, we speculated that a portion of propiophenone may undergo cleavage of the C-C bond to produce an aldehyde. In order to confirm this, benzaldehyde was added to the reaction system, and only trace amount of original product $\mathbf{2 a}$ was found. In contrast, the corresponding aldehyde condensation products was obtained in yields of 66%, respectively (reactions 5). If 4 equivalents of benzaldehyde are added, the formation of

2a can also be completely inhibited. The results indicate that a competitive reaction occurs when an excess of other aldehyde is present, and the root cause is related to the thermodynamic and kinetic differences in the cleavage of the old bond and the formation of the new bond during the reaction.

At the same time, ethylamine was used as a nitrogen source and phenylacetone as a substrate to react under the same reaction conditions. The intermediates α-ethylpheny-lacetone, (E)-ethylacetone-1-(ethylimino)-1-phenyl-propan-2-amine and N-ethylbenzamide and their products 1,3-diethyl-4- methyl-ene-5-phenyl-2,3-dihydro1-himidazole were found by LC-MS(reaction 6).

In addition, the effects of air and water on the reaction were also tested(As follows). In the absence of water(anhydrous methanol) or air, no corresponding target product was obtained.

6.2 A proposed reaction pathway for imidazole synthesis

7. Crystal data

7.1 Crystal data of 4-(4-fluorophenyl)-2,5-dimethyl-1H-imidazole(CCDC 1853653)

Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FN}_{2}$
Formula weight	180.72
Temperature	293(2) K
Wavelength	$0.71073 \AA$
Crystal system	Orthorhombic
Space group	I b a 2
Unit cell dimensions	$a=9.8331(14) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=20.335(3) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=9.8331(14) \AA \quad \gamma=90^{\circ}$.
Volume	1966.2(5) \AA^{3}
Z	8
Density (calculated)	$1.221 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.081 \mathrm{~mm}^{-1}$
$F(000)$	764
Crystal size	$0.211 \times 0.102 \times 0.056 \mathrm{~mm}^{3}$
Theta range for data collection	2.003 to 25.997°.
Index ranges	$-8 \leq \mathrm{h} \leq 12,-24 \leq \mathrm{k} \leq 24,-12 \leq 1 \leq 12$
Reflections collected	5677
Independent reflections	$1892[\mathrm{R}(\mathrm{int})=0.0368]$
Completeness to theta $=25.242^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6452
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1892 / 1/133
Goodness-of-fit on F^{2}	1.197
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0544, \mathrm{wR} 2=0.1250$

R indices (all data)	$\mathrm{R} 1=0.0596, \mathrm{wR} 2=0.1283$
Absolute structure parameter	$1.5(10)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.193 and -0.138 e. \AA^{-3}
7.2 Crystal data of5-methyl-4-phenyl-1H-imidazole(CCDC 1882199)	

Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}$	
Formula weight	158.20	
Temperature	296 K	
Wavelength	$0.71073 \AA$	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	$a=9.612(3) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=7.441(2) \AA$	$\beta=90^{\circ}$.
	$\mathrm{c}=24.001(7) \AA$	$\gamma=90^{\circ}$.
Volume	1716.6(9) \AA^{3}	
Z	8	
Density (calculated)	$1.224 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.075 \mathrm{~mm}^{-1}$	
$F(000)$	672	
Crystal size	$0.12 \times 0.1 \times 0.05 \mathrm{~mm}^{3}$	
Theta range for data collection	1.697 to 27.497°.	

Index ranges	$-12 \leq \mathrm{h} \leq 12,-9 \leq \mathrm{k} \leq 9,-24 \leq \mathrm{l} \leq 31$
Reflections collected	12822
Independent reflections	$1974[\mathrm{R}(\mathrm{int})=0.0580]$
Completeness to theta $=25.242^{\circ}$	100.0%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6851
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$1974 / 0 / 110$
Goodness-of-fit on F^{2}	$\mathrm{R} 1=0.103$
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.1112, \mathrm{wR} 2=0.1333$
R indices (all data)	0.125 and -0.217 e. \AA^{-3}
Extinction coefficient	
Largest diff. peak and hole	

7.3 Crystal data of 3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole(CCDC 1882198)

Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3}$	
Formula weight	287.35	
Temperature	$293(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 21 / \mathrm{c}$	$\alpha=90^{\circ}$.

	$\mathrm{b}=16.1189(18) \AA$	$\beta=98.182(3)^{\circ}$.
	$\mathrm{c}=10.7902(12) \AA$	$\gamma=90^{\circ}$.
Volume	1531.8(3) \AA^{3}	
Z	4	
Density (calculated)	$1.246 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.075 \mathrm{~mm}^{-1}$	
$F(000)$	608	
Crystal size	$0.180 \times 0.130 \times 0.080 \mathrm{~mm}^{3}$	
Theta range for data collection	2.288 to 25.996°.	
Index ranges	$-10 \leq h \leq 10,-19 \leq \mathrm{k} \leq 19,-9 \leq 1 \leq 13$	
Reflections collected	9181	
Independent reflections	$3004[\mathrm{R}(\mathrm{int})=0.0397]$	
Completeness to theta $=25.242^{\circ}$	100.0 \%	
Absorption correction	Semi-empirical from equivalent	
Max. and min. transmission	0.7457 and 0.6486	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	3004 / 0 / 206	
Goodness-of-fit on F^{2}	1.028	
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0511, \mathrm{wR} 2=0.1135$	
R indices (all data)	$\mathrm{R} 1=0.0787, \mathrm{wR} 2=0.1279$	
Extinction coefficient	0.0055(12)	
Largest diff. peak and hole	0.183 and -0.162 e. \AA^{-3}	

8. NMR spectra

(

(

 ririvirivivijirició申。

