Supporting Information

Novel Synthesis of Divergent Aryl Imidazoles from Ketones Involving Copper-Catalyzed α-Amination and Oxidative C-C Bond Cleavage

Jiangkun Huang,^a Lan Luo,^a Naiguo Xing,^a Linghui Gu,^a Chen Li,^a Qiao Han,^a Shilong Zheng,^{*b} Ling He^{*a}

^aKey Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041(P. R. China). E-mail: heling2012@scu.edu.cn.

^bDepartment of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.

Table of Contents

1.General information	2
2.Optimization of the reaction conditions	3
3.General procedure for the formation of compound 2	4
4.General procedure for the formation of compound 3	5
5.General procedure for the formation of compound 4	7
6.Mechanistic study	8
7.Crystal data	11
8.NMR Spectra	14

1. General information

All reactions were carried out under air atmosphere, unless otherwise mentioned. Commercially available materials were used as received without further purification. Reactions were monitored by thin-layer chromatography (TLC) carried out on commercial silica gel plates using UV light as a visualizing agent . Commercial silica gel was used for column chromatography. ¹H and ¹³C NMR spectra were recorded on 400 MHz or 600 MHz spectrometer. ¹H NMR spectra were referenced to Chloroform-d(7.26 ppm)or DMSO-d₆(2.50 ppm), and reported as follows; chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Chemical shifts of the ¹³C NMR spectra were measured relative to Chloroform-d (77.23 ppm) or DMSO-d₆(39.51 ppm). Mass spectral data were obtained from Bruker Daltonics Data analysis 3.2 mass spectrometer.X-Ray data were collected on a Bruker APEX-II equipped with a CCD area detector using Mo/Ka radiation. The structures were solved by direct method using SHELXL-97.

2. Optimization of the reaction conditions(Table 1)

$ \begin{array}{c} $					
Entry	Catalyst	Solvent	nitrogen source	Temp (°C)	Yield (%)
1	-	МеОН	(NH ₄) ₂ CO ₃	60	0
2	CuI	МеОН	(NH ₄) ₂ CO ₃	60	59
3	Cu(OTf) ₂	MeOH	(NH ₄) ₂ CO ₃	60	25
4	CuCl	MeOH	(NH ₄) ₂ CO ₃	60	23
5	CuBr	MeOH	(NH ₄) ₂ CO ₃	60	40
6	CuI	MeOH	(NH ₄) ₂ CO ₃	40	trace
7	CuI	MeOH	(NH ₄) ₂ CO ₃	80	65
8	CuI	МеОН	(NH ₄) ₂ CO ₃	100	76
9	CuI	n-BuOH	(NH ₄) ₂ CO ₃	100	39
10	CuI	EtOH	(NH ₄) ₂ CO ₃	100	47
11	CuI	MeOH	NH ₄ OAc	100	0

12	CuI	MeOH	$(NH_4)_2C_2O_4$	100	trace
			(.)= = .		

Reaction conditions: catalyst (10 mol%), **1a** (0.37 mmol), nitrogen source (7.4 mmol), air, and solvent (2 mL).

First, using propiophenone as the substrate, we investigated the effect of different reaction conditions on the reaction. The alcohol was beneficial to the reaction. As shown in Table 1, methanol was the most effective for the cleavage and the reaction was hardly carried out in ethyl acetate, MeCN, DCM, dioxane, DMF or DMSO. Besides copper salt, FeCl₂, Rh₂(OAc)₂, Ru(TTP)(CO) were employed as promoter for the cleavages of 1a in methanol. However, only cuprous iodide can obtain moderate to high yield in promote cleavage reaction. In addition,the influence of the ammonium salt as nitrogen source on the α -amination reaction of 1a has been studied using ammonium carbonate, ammonium acetate and ammonium oxalate. Table 1 shows the other optimal reaction conditions include CuI as the catalyst, (NH₄)₂CO₃ as the nitrogen source, and air as the oxidant at 100°C in a sealed tube for 6 h(Table 1,entry 8).

3. General procedure for the formation of compound 2

General procedure for the formation of compound 2: A 25ml sealed tube was charged with CuI (10 mol%), 1 (0.37 mmol), (NH_{4})₂CO₃ (7.4 mmol), and MeOH (2 mL,undried), $H_2O(0.37$ mmol), the mixture was stirred at 100°C for 6~24h. After disappearance of the reactant (monitored by TLC), the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The crude residue was purified by silica gel chromatography using petroleum ether/acetone /triethylamine as eluent to give pure product 2.

2,5-Dimethyl-4-phenyl-1H-imidazole (2a): White soild, yield: 76%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.68 (s, 1H), δ 7.55 (d, J = 7.7 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.16 (t, J = 7.7 Hz, 1H), 2.31 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 142.3, 134.8, 128.9, 128.6, 125.7, 125.4, 13.9, 12.3. HRMS (ESI) calcd for C₁₁H₁₃N₂ [M+H]⁺: 173.1073, Found 173.1072.

4-(4-Chlorophenyl)-2,5-dimethyl-1H-imidazole (2b): White soild, yield: 56%. ¹H NMR (400 MHz,DMSO-d₆) δ 11.70 (s, 1H), 7.58 (d, J = 7.8 Hz, 2H), 7.39 (d, J = 7.8 Hz, 2H), 2.31 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 142.4, 134.5, 129.7, 128.5, 127.2, 113.7, 13.9, 12.1. HRMS (ESI) calcd for C₁₁H₁₂ClN₂ [M+H]⁺: 207.0684, Found: 207.0682.

4-(4-Bromophenyl)-2,5-dimethyl-1H-imidazole (2c): White soild, yield: 54%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.71 (s, 1H), 7.52 (s, 4H), 2.30 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 142.5, 137.3, 134.6, 131.4, 127.8, 127.6, 118.2, 14.0, 12.2. HRMS(ESI) calcd for C₁₁H₁₂BrN₂ [M+H]⁺:251.0178, Found: 251.0181.

4-(4-Fluorophenyl)-2,5-dimethyl-1H-imidazole (2d, CCDC 1853653): White soild, yield: 80%. ¹H NMR (400 MHz, Chloroform-d) δ 7.54 – 7.48 (m, 2H), 7.11 – 7.04 (m, 2H), 3.96 (s, 1H), 2.42 (s, 3H), 2.37 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 160.6 (d, *J* = 241.9 Hz), 142.5, 131.9, 127.7 (d, *J* = 7.7 Hz), 115.5 (d, *J* = 21.2 Hz), 14.1, 12.2. HRMS (ESI) calcd for C₁₁H₁₂FN₂ [M+H]⁺: 191.0979, Found 191.0973.

4-(2-Fluorophenyl)-2,5-dimethyl-1H-imidazole (2e): White soild, yield: 76%. ¹H NMR (400 MHz, Chloroform-d) δ 7.49–7.43 (m, 1H), 7.21 (m, 1H), 7.16–7.04 (m, 2H), 6.28 (s, 1H), 2.35 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 159.0 (d, J = 245.7 Hz), 143.5, 130.0 (d, J = 3.8 Hz), 129.9, 128.3 (d, J = 8.3 Hz), 124.8, 124.3 (d, J = 3.3 Hz), 120.7 (d, J = 14.1 Hz), 115.9 (d, J = 22.7 Hz), 13.9, 12.4 (d, J = 3.6 Hz). HRMS (ESI) calcd for C₁₁H₁₂FN₂ [M+H]⁺: 191.0979, Found: 191.0978.

4-(4-(Trifluoromethyl)phenyl)-2,5-dimethyl-1H-imidazole (2f): White soild, yield: 65%. ¹H NMR (400 MHz,DMSO-d₆) δ 11.82 (s, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.71 (d, *J* = 8.1 Hz, 2H), 2.43 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 142.8, 140.5, 133.3, 126.3, 126.0, 125.7(125.72), 125.7(125.69), 125.6 (q, *J* = 3.3 Hz), 124.3, 14.2, 11.8. HRMS (ESI) calcd for C₁₂H₁₂F₃N₂ [M+H]⁺: 241.0947, Found: 241.0947.

4-(3-(Trifluoromethyl)phenyl)-2,5-dimethyl-1H-imidazole (2g): White soild, yield: 57%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.82 (s, 1H), 7.91 (s, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.49 (d, *J* = 7.7 Hz, 1H), 2.36 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz,DMSO-d₆) δ 142.5, 136.3, 129.7, 129.4, 129.1, 128.9, 128.8, 124.4 (q, *J* = 272.3 Hz), 121.6, 121.5, 121.4, 121.3, 13.7, 11.7. HRMS (ESI) calcd for C₁₂H₁₂F₃N₂ [M+H]⁺: 241.0947, Found: 241.0950.

2,5-Dimethyl-4-(p-tolyl)-1H-imidazole (2h): White soild, yield: 41%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.63 (s, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 2.29 (s, 3H), 2.28 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 142.0, 134.4, 131.9, 129.1(129.11), 129.1(129.08), 125.7, 20.9, 13.9, 12.4. HRMS (ESI) calcd for C₁₂H₁₅N₂ [M+H]⁺: 187.1230, Found: 187.1233.

4-(4-Methoxyphenyl)-2,5-dimethyl-1H-imidazole (2i): White soild, yield: 39%. ¹H NMR (400 MHz, DMSO-d₆) δ 7.46 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 3.75 (s, 3H), 2.26 (s, 3H), 2.24 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 157.6, 142.1, 127.5, 127.3, 114.2, 55.5, 14.1, 12.5. HRMS (ESI) calcd for C₁₂H₁₅N₂O [M+H]⁺: 203.1179, Found: 203.1180.

2,5-Dimethyl-4-(thiophen-2-yl)-1H-imidazole (2j): White soild, yield: 42%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.73 (s, 1H), 7.31 (d, *J* = 5.0 Hz, 1H), 7.04 (m, 2H), 2.29 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz,DMSO-d₆) δ 142.4, 127.7(127.68), 127.7(127.65), 122.7, 120.9(120.86), 120.9(120.85), 13.8, 11.4. HRMS (ESI) calcd for C₉H₁₁N₂S [M+H]⁺: 179.0637, Found: 179.0637.

4-(2,3-Dihydrobenzofuran-5-yl)-2,5-dimethyl-1H-imidazole (2k): White soild, yield: 68%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.59 (s, 1H), δ 7.39 (s, 1H), 7.24 (d, *J* = 8.3 Hz, 1H), 6.75 (d, *J* = 8.3 Hz, 1H), 4.51 (t, *J* = 8.7 Hz, 2H), 3.18 (t, *J* = 8.7 Hz, 2H), 2.24 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 158.1, 141.9, 127.7, 125.8, 123.1, 109.1, 71.3, 29.7, 14.2, 12.6. HRMS (ESI) calcd for C₁₃H₁₅N₂O [M+H]⁺: 215.1179, Found: 215.1178.

2,5-Dimethyl-4-(5,6,7,8-tetrahydronaphthalen-2-yl)-1H-imidazole (21): White soild, yield: 39%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.60 (s, 1H), 7.23 (m, 2H), 7.02 (d, *J* = 8.3 Hz, 1H), 2.71 (m, 4H), 2.27 (s, 3H), 2.23 (s, 3H), 1.73 (m, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 141.9, 136.5, 133.8, 131.9, 129.1, 126.2, 123.2, 29.2, 28.7, 23.1(23.13), 23.1(23.11), 14.0, 12.5. HRMS (ESI) calcd for C₁₅H₁₉N₂ [M+H]⁺: 227.1543, Found: 227.1538.

4-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-2,5-dimethyl-1H-imidazole (2m): White soild, yield: 41%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.56 (s, 1H), 6.99 (m, 2H), 6.83 (d, *J* = 8.5 Hz, 1H), 4.24 (s, 4H), 2.25 (s, 3H), 2.22 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 143.6, 142.1, 141.7, 128.6, 119.1, 117.4, 114.5, 64.6, 64.5, 14.2, 12.5. HRMS (ESI) calcd for C₁₃H₁₅N₂O₂ [M+H]⁺: 231.1128, Found: 231.1126.

2,5-Diethyl-4-phenyl-1H-imidazole (2n): Colourless oil, yield: 24%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.57 (s, 1H), δ 7.52 (d, *J* = 7.8Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.17 (t, *J* = 7.8Hz, 1H), 2.69 (q, *J* = 7.6Hz, 2H), 2.61 (q, *J* = 7.6 Hz, 2H), 1.22 (t, *J* = 7.6 Hz, 3H), 1.19 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 148.1, 134.9, 128.8, 127.5, 126.4, 125.8, 21.8, 19.6, 14.7, 13.3. HRMS (ESI) calcd for C₁₃H₁₇N₂ [M+H]⁺: 201.1386, Found: 201.1380.

4-Phenyl-2,5-dipropyl-1H-imidazole (20): Colourless oil, yield: 11%. ¹H NMR (400 MHz, Chloroform-d) δ 8.12 (s, 1H), δ 7.52 (d, J = 7.7 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.21 (t, J = 7.7 Hz, 1H), 2.69 (t, J = 7.8 Hz, 2H), 2.62 (t, J = 7.8 Hz, 2H), 1.68 (m, 4H), 0.92 (m, 6H). ¹³C NMR (150 MHz, Chloroform-d) δ 147.3, 133.9, 128.4, 127.6, 126.8, 126.1, 30.5, 28.2, 23.1, 22.1, 14.0, 13.8. HRMS (ESI) m/z calcd for C₁₅H₂₁N₂ [M+H]⁺: 229.1699 , Found: 229.1700.

2,4,5-Triphenyl-1H-imidazole (2p): White soild, yield: 48%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.73 (s, 1H), 8.12 (d, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 7.4 Hz, 2H), 7.56 – 7.46 (m, 6H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d₆) δ 145.9, 137.5, 135.6, 131.5, 130.8, 129.1(129.12), 129.1(129.09), 128.9, 128.7, 128.6, 128.2, 127.5, 126.9, 125.6. HRMS (ESI) calcd for C₂₁H₁₇N₂ [M+H]⁺: 297.1386, Found: 297.1388.

4. General procedure for the formation of compound 3

General procedure for the formation of compound 3: A 25ml sealed tube was charged with CuI (10 mol%), Phenylacetone (0.37 mmol), Aldehyde (1.48 mmol), (NH₄)₂CO₃ (7.4 mmol), and MeOH (2 mL, undried, hydrous methanol), the mixture was stirred at 100 $^{\circ}$ C for 6~24h. After disappearance of the reactant (monitored by TLC), the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The crude residue was purified by silica gel chromatography using petroleum ether/ ethyl acetate as eluent to give pure product 3.

5-Methyl-2,4-diphenyl-1H-imidazole (3a): Yellow solid, yield: 66%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.39 (s, 1H), 7.97 (d, *J* = 7.2 Hz, 2H), 7.69 (d, *J* = 7.2 Hz, 2H), 7.50–7.37 (m, 4H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.24 (t, *J* = 7.2 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 144.2, 134.7, 131.0, 129.2, 128.9, 128.3, 126.6, 126.3, 125.2, 12.5. HRMS (ESI) m/z calcd for C₁₆H₁₅N₂ [M+H]⁺: 235.1230, Found: 235.1230.

5-Methyl-4-phenyl-2-(p-Tolyl)-1H-imidazole (3b): Yellow solid, yield: 65%.¹H NMR (400 MHz, Chloroform-d) δ 7.76 (d, J = 9.7 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 7.49–7.39 (m, 2H), 7.31 (m, 1H), 7.23 (d, J = 7.9 Hz, 2H), 2.48 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 145.1, 138.5, 133.0, 129.6, 129.3, 128.6, 127.3, 126.7, 126.6, 125.0, 21.3, 12.6. HRMS (ESI) m/z calcd for C₁₇H₁₇N₂ [M+H]⁺: 249.1397 , Found: 249.1386.

2-(4-Methoxyphenyl)-5-methyl-4-phenyl-1H-imidazole (3c): Yellow solid, yield: 74%. ¹H NMR (400 MHz, Chloroform-d) δ 7.78 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 7.7 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.28 (m, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H), 2.46 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 159.8, 145.3, 128.7, 128.5, 128.4(128.41), 128.4(128.35), 126.8, 126.7, 126.4, 123.0, 114.1, 55.3, 12.3. HRMS (ESI) m/z calcd for C₁₇H₁₇N₂O [M+H]⁺: 265.1335, Found: 265.1337.

2-(2-Methoxyphenyl)-5-methyl-4-phenyl-1H-imidazole (3d): Yellow semisolid, yield: 60%. ¹H NMR (400 MHz, Chloroform-d) δ 8.46–8.27 (m, 1H), 7.61 (d, *J* = 7.7 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.26 (m, 2H), 7.07 (t, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 8.3 Hz, 1H), 3.97 (s, 3H), 2.49 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 155.5, 142.8, 133.3, 129.2, 128.6, 128.3, 126.5, 126.4, 121.6, 118.2, 111.2, 55.8, 12.9. HRMS (ESI) m/z calcd for C₁₇H₁₇N₂O [M+H]⁺: 265.1335, Found: 265.1337.

2-(Benzo[d][1,3]dioxol-5-yl)-5-methyl-4-phenyl-1H-imidazole (3e): Yellowish solid, yield: 60%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.28 (s, 1H), 7.70 (d, *J* = 7.5 Hz, 2H), 7.48 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.06 (s, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 148.1, 147.5, 143.9, 136.3, 136.1, 128.7, 126.4, 126.0, 125.5, 124.2, 118.9, 109.0, 105.5, 101.6, 11.8. HRMS (ESI) m/z calcd for C₁₇H₁₅N₂O₂ [M+H]⁺: 279.1128, Found: 279.1130.

N,N-Dimethyl-4-(5-methyl-4-phenyl-1H-imidazol-2-yl)aniline (3f): Yellow solid, yield: 70%. ¹H NMR (600 MHz, DMSO-d6) δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 2H), 2.94 (s, 6H), 2.42 (s, 3H). ¹³C NMR (150 MHz, DMSO-d6) δ 150.4, 145.2, 128.7, 126.4, 126.3, 125.9, 119.3, 112.4, 58.1, 8.2. HRMS (ESI) m/z calcd for C₁₈H₂₀N₃ [M+H]⁺: 278.1652, Found: 278.1651.

2-(3,4-Dimethoxyphenyl)-5-methyl-4-phenyl-1H-imidazole (3g): Yellow solid, yield: 52%. ¹H NMR (400 MHz, Chloroform-d) δ 7.56 (m, 3H), 7.4–7.34 (m, 3H), 7.24 (d, *J* = 7.3 Hz, 1H), 6.82 (d, *J* = 8.3 Hz, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 2.42 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 149.4, 149.3, 145.1, 132.0, 128.6, 128.5, 127.3, 126.7, 126.5, 123.3, 117.2, 111.1, 108.7, 55.9, 55.8, 14.2. HRMS (ESI) m/z calcd for C₁₈H₁₉N₂O₂ [M+H]⁺: 295.1441, Found: 295.1441.

2-(4-Chlorophenyl)-5-methyl-4-phenyl-1H-imidazole (3h): White solid, yield: 51%. ¹H NMR (600 MHz, Chloroform-d) δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 1H), 2.47 (s, 3H). ¹³C NMR

 $(150 \text{ MHz}, \text{Chloroform-d}) \, \delta \, 144.2, \, 134.2, \, 133.7, \, 132.8, \, 128.9, \, 128.5(128.53), \, 128.5(128.49), \, 126.9, \, 126.8, \, 126.5, \, 12.1. \, \text{HRMS} \, (\text{ESI}) \, \text{m/z} \, \text{calcd for } C_{16}H_{14}\text{ClN}_2 \, [\text{M+H}]^+: \, 269.0840, \, \text{Found: } 269.0842.$

2-(3-Chlorophenyl)-5-methyl-4-phenyl-1H-imidazole (3i): White solid, yield: 64%. ¹H NMR (400 MHz, Chloroform-d) δ 7.82 (s, 1H), 7.71 (d, *J* = 5.8 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.28 (m, 3H), 2.46 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 143.3, 134.8, 133.3, 132.1, 130.8, 130.1, 128.7(128.69), 128.7(128.66), 127.1, 127.0, 125.4, 123.4, 12.2. HRMS (ESI) m/z calcd for C₁₆H₁₄ClN₂ [M+H]⁺: 269.0840, Found: 269.0843.

5-Methyl-2-(naphthalen-1-yl)-4-phenyl-1H-imidazole (3j): White solid, yield: 91%. ¹H NMR (400 MHz, Chloroform-d) δ 8.58 (dd, *J* = 6.5, 3.4 Hz, 1H), 7.87–7.80 (m, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 7.1 Hz, 1H), 7.49 (dd, *J* = 6.4, 3.3 Hz, 2H), 7.44–7.36 (m, 3H), 7.30 (t, *J* = 7.3 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 144.4, 133.8, 133.3, 131.0, 129.2, 128.6, 128.3, 127.8, 126.7, 126.6, 126.5, 126.1, 126.0, 124.9, 12.4. HRMS (ESI) m/z calcd for C₂₀H₁₇N₂ [M+H]⁺: 285.1386, Found: 285.1390.

5-Methyl-4-phenyl-2-(thiophen-2-yl)-1H-imidazole (3k): Yellow solid, yield: 51%. ¹H NMR (400 MHz, Chloroform-d) δ 7.54 (d, *J* = 7.2 Hz, 2H), 7.44 (d, *J* = 3.6 Hz, 1H), 7.34 (t, *J* = 7.2 Hz, 2H), 7.26–7.18 (m, 2H), 6.96 (m, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ140.8, 133.4, 132.7, 128.9, 128.5, 127.7, 126.9, 126.6, 125.5, 124.1, 12.3. HRMS (ESI) m/z calcd for C₁₄H₁₃N₂S [M+H]⁺: 241.0794, Found: 241.0796.

5-Methyl-4-phenyl-2-propyl-1H-imidazole (31): Yellow semisolid, yield: 40%. ¹H NMR (400 MHz, Chloroform-d) δ 8.70 (s, 1H), 7.53 (d, *J* = 7.7 Hz, 2H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.20 (t, *J* = 7.7 Hz, 1H), 2.60 (t, *J* = 7.4 Hz, 2H), 2.37 (s, 3H), 1.71–1.61 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 147.4, 133.6, 131.2, 128.5, 126.5, 126.1, 30.4, 22.1, 13.9, 12.3. HRMS (ESI) m/z calcd for C₁₃H₁₇N₂ [M+H]⁺: 201.1386, Found: 201.1389.

5-Methyl-4-phenyl-1H-imidazole (3m, CCDC 1882199): Yellowish solid, yield: 78%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.07 (s, 1H), 7.60 (m, 3H), 7.38 (t, J = 7.6 Hz, 2H), 7.20 (s, 1H), 2.38 (s, 3H). ¹³C NMR (150 MHz, CD₃OD+Chloroform-d) δ 133.5, 133.3, 132.2, 128.3, 126.5, 126.2, 11.4. HRMS (ESI) m/z calcd for C₁₀H₁₁N₂ [M+H]⁺: 159.0917, Found: 159.0917.

5. General procedure for the formation of compound 4

General procedure for the formation of compound 4: A 25ml sealed tube was charged with CuI (10 mol%), α -aryl ketone(0.37 mmol), ketone (1.48 mmol), (NH₄)₂CO₃ (7.4 mmol), and MeOH (2 mL,undried, hydrous methanol), the mixture was stirred at 100°C for 6~24h. After disappearance of the reactant (monitored by TLC), the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The crude residue was purified by silica gel chromatography using petroleum ether/ ethyl acetate as eluent to give pure product.

3-(2,2-Dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole (4a, CCDC 1882198): White solid, yield: 65%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.44 (s, 1H), 8.33–8.26 (m, 1H), 7.63–7.48 (m, 5H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.25–7.12 (m, 2H), 6.91 (d, *J* = 2.9 Hz, 1H), 1.56 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.3, 158.5, 136.5, 135.1, 130.1, 129.0, 128.8(128.84), 128.8(128.78), 126.9, 123.2, 122.4, 121.1, 112.3, 108.4, 101.8, 25.3. HRMS (ESI) calcd for C₁₉H₁₈N₃ [M+H]⁺: 288.1490, Found: 288.1492.

3-(2,2-Dimethyl-5-phenyl-2H-imidazol-4-yl)-2-methyl-1H-indole (4b): White solid, yield: 75%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.42 (s, 1H), 7.91–7.82 (m, 1H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.30 (m, 3H), 7.03 (m, 2H), 6.83 (t, *J* = 7.6 Hz, 1H), 2.10 (s, 3H), 1.56 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.8, 159.8, 137.3, 135.7, 133.7, 130.4, 128.8, 128.4, 127.6, 121.5, 119.8, 119.6, 119.3, 105.9, 101.7, 25.1, 13.1. HRMS (ESI) calcd for C₂₀H₂₀N₃ [M+H]⁺: 302.1652, Found: 302.1650.

3-(2,2-Dimethyl-5-phenyl-2H-imidazol-4-yl)-2-phenyl-1H-indole (4c): White solid, yield: 50%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.83 (s, 1H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.42 (d, *J* = 7.9 Hz, 1H), 7.26–7.12 (m, 9H), 7.10–7.03 (m, 3H), 1.61 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.4, 160.0, 137.9, 136.2, 132.2, 131.8, 129.5, 128.4, 127.9(127.92), 127.9(127.87), 127.8, 127.6, 127.3, 122.5, 120.2, 119.3, 111.7, 105.6, 101.7, 24.2. HRMS (ESI) calcd for C₂₅H₂₂N₃ [M+H]⁺: 364.1808, Found: 364.1809.

5-Chloro-3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-2-phenyl-1H-indole (4d): White solid, yield: 74%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.05 (s, 1H), 7.51 (d, *J* = 8.6 Hz, 1H), 7.44 (s, 1H), 7.21 (m, 7H), 7.08 m, 4H), 1.62 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.2, 159.4, 139.8, 134.7, 132.2, 131.4, 129.4, 128.9, 128.5, 128.3, 127.8, 127.7, 127.2, 124.8, 122.5, 118.4, 113.4, 105.2, 101.9, 24.2. HRMS (ESI) calcd for C₂₅H₂₁N₃Cl [M+H]⁺: 398.1419, Found: 398.1415.

5-Bromo-3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole (4e): White solid, yield: 68%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.63 (s, 1H), 8.42 (d, *J* = 2.0 Hz, 1H), 7.61–7.49 (m, 5H), 7.43 (d, *J* = 8.6 Hz, 1H), 7.33 (m, 1H), 6.95 (s, 1H), 1.56 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.5, 157.7, 134.8, 134.3, 129.8, 129.7, 128.4, 128.3, 128.2, 125.3, 124.0, 114.0, 113.4, 107.5, 101.6, 24.7. HRMS (ESI) calcd for C₁₉H₁₇N₃Br [M+H]⁺: 366.0600, Found: 366.0601.

6-Fluoro-3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole (4f): White solid, yield: 62%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.49 (s, 1H), 8.28 (dd, J = 8.8, 5.7 Hz, 1H), 7.54 (m, 5H), 7.25 (m, 1H), 7.04 (m, 1H), 6.92 (d, J = 2.8 Hz, 1H), 1.55 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.8, 159.6 (d, J = 236.5 Hz), 136.3 (d, J = 12.7 Hz), 134.6, 129.9, 129.3, 128.6, 128.5, 123.3 (d, J = 3.7 Hz), 123.2, 109.4, 109.1, 108.2, 101.6, 98.2 (d, J = 25.1 Hz), 24.9. HRMS (ESI) calcd for C₁₉H₁₇FN₃ [M+H]⁺: 306.1401, Found: 306.1398.

5-Methoxy-3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole (4g): White solid, yield: 50%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.34 (s, 1H), 7.78 (d, J = 2.5 Hz, 1H), 7.59–7.49 (m, 5H), 7.35 (d, J = 8.8 Hz, 1H), 6.90–6.84 (m, 2H), 3.76 (s, 3H), 1.56 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.0, 158.3, 154.8, 134.8, 131.3, 129.8, 129.1, 128.5(128.54), 128.5(128.49), 127.2, 112.7, 112.6, 107.9, 104.3, 101.5, 55.6, 25.1. HRMS (ESI) calcd for C₂₀H₂₀N₃O [M+H]⁺: 318.1601, Found: 318.1601.

5-Chloro-3-(2,2-dimethyl-5-(p-Tolyl)-2H-imidazol-4-yl)-2-phenyl-1H-indole (4h): White solid, yield: 55%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.07 (s, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.43 (d, J = 2.0 Hz, 1H), 7.23 (m, 6H), 7.06 (d, J = 7.8 Hz, 2H), 6.86 (d, J = 7.8 Hz, 2H), 2.15 (s, 3H), 1.60 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.2, 159.8, 139.7, 139.3, 134.9, 131.6, 129.5, 129.2, 128.6(128.56), 128.6(128.56), 128.4, 127.9, 127.5, 125.0, 122.6, 118.5, 113.5, 105.6, 101.9, 24.4, 21.0. HRMS (ESI) calcd for C₂₆H₂₃ClN₃ [M+H]⁺: 412.1575, Found: 412.1475.

3-(2,2-Dimethyl-5-(p-tolyl)-2H-imidazol-4-yl)-2-methyl-1H-indole (4i): White solid, yield: 50%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.39 (s, 1H), 7.40 (d, *J* = 7.9 Hz, 2H), 7.32 (d, *J* = 8.9 Hz, 1H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.08–7.00 (m, 2H), 6.84 (m, 1H), 2.29 (s, 3H), 2.10 (s, 3H), 1.54 (s, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 168.0, 159.7, 139.9, 137.0, 135.4, 130.4, 129.1, 128.2, 127.3, 121.2, 119.6, 119.3, 111.1, 105.6, 101.3, 25.0, 21.2, 12.9. HRMS (ESI) calcd for C₂₁H₂₂N₃ [M+H]⁺: 316.1807, Found: 316.1805.

3-(2-Ethyl-5-phenyl-2-(p-Tolyl)-2H-imidazol-4-yl)-2-methyl-1H-indole (4j): White solid, yield: 52%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.50 (s, 1H), 7.67 (d, *J* = 7.9 Hz, 2H), 7.59–7.53 (m, 2H), 7.48–7.42 (m, 1H), 7.39–7.32 (m, 3H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.09–7.02 (m, 2H), 6.86 (t, *J* = 7.5 Hz, 1H), 2.30 (s, 3H), 2.28–2.21 (m, 2H), 2.13 (s, 3H), 0.75 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.3, 160.4, 138.3, 137.3, 136.4, 135.3, 133.0, 130.1, 128.7, 128.5, 128.1, 127.3, 127.2, 121.1, 119.5, 119.0, 111.0, 107.2, 105.3, 34.0, 20.7, 12.7, 8.4. HRMS (ESI) calcd for C₂₇H₂₆N₃ [M+H]⁺: 392.2127, Found: 392. 2197.

6. Mechanistic study

6.1 Exploration of reaction process

Detection of LC-MS of reaction 6

To understand the reaction for novel imidazole synthesis well, we designed a series of experiments to observe the special effects of some conditions on the imidazole synthesis. The effect of the nitrogen source on the reaction was first investigated. As shown in reaction 1, no reaction occurred in the absence of (NH₄)₂CO₃. This result indicates that (NH₄)₂CO₃ is really a nitrogen source for the reaction and it may decompose into ammonia to form a complex with copper and participates in the catalytic cycle. To confirm this point, ammonia-saturated methanol was used as the reaction solvent (reaction 2). The reaction occurred, but the yield of the corresponding product was only 46%. This lower yield may be due to the fact that only a limited amount of ammonia dissolved in methanol. Subsequently, the copperammonia complex was prepared by the reaction of the copper salt with excess ammonia water and was used in the reaction 3a. The result shows that the product was obtained in 72% yield, which confirmed that the copper-ammonia complex was not only the catalyst of the reaction, but also the nitrogen source. In addition, the effects of air and water on the reaction were also investigated (reactions 3). In the absence of water(anhydrous methanol) or air, no target product was obtained, indicating that water and air are necessary for the reaction. It is suggested that the breaking of C-C bond of propiophenone may be realized by the joint involving of oxygen and water. Further, to confirm the α -C-H activation and α -amination in the imidazole formation, α -perdeuterated propiophenone was used as the substrate using deuterated methanol as solvent in the presence of dry air and D_2O , the product was obtained in only 11% yield (reaction 4). The results show that C-H activation is a prerequisite for the reaction process.

Referring to the C-C bond cleavage reaction ^[11, 15], during the formation of imidazoles, we speculated that a portion of propiophenone may undergo cleavage of the C-C bond to produce an aldehyde. In order to confirm this, benzaldehyde was added to the reaction system, and only trace amount of original product **2a** was found. In contrast, the corresponding aldehyde condensation products was obtained in yields of 66%, respectively (**reactions 5**). If 4 equivalents of benzaldehyde are added, the formation of

2a can also be completely inhibited. The results indicate that a competitive reaction occurs when an excess of other aldehyde is present, and the root cause is related to the thermodynamic and kinetic differences in the cleavage of the old bond and the formation of the new bond during the reaction.

At the same time, ethylamine was used as a nitrogen source and phenylacetone as a substrate to react under the same reaction conditions. The intermediates α -ethylpheny-lacetone, (E)-ethylacetone-1-(ethylimino)-1-phenyl-propan-2-amine and *N*-ethylbenzamide and their products 1,3-diethyl-4- methyl-ene-5-phenyl-2,3-dihydro1-himidazole were found by LC-MS(reaction 6).

In addition, the effects of air and water on the reaction were also tested(As follows). In the absence of water(anhydrous methanol) or air, no corresponding target product was obtained.

$$[Cu(NH_3)_4]SO_4, MeOH(dried) \rightarrow No reaction No Air, No H_2O, 100°C \rightarrow No reaction$$

6.2 A proposed reaction pathway for imidazole synthesis

7. Crystal data

7.1 Crystal data of 4-(4-fluorophenyl)-2,5-dimethyl-1H-imidazole(CCDC 1853653)

Empirical formula	$C_{11}H_{11}FN_2$	
Formula weight	180.72	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	I b a 2	
Unit cell dimensions	a = 9.8331(14) Å	α=90°.
	b = 20.335(3) Å	β= 90°.
	c = 9.8331(14) Å	γ= 90°.
Volume	1966.2(5) Å ³	
Z	8	
Density (calculated)	1.221 Mg/m ³	
Absorption coefficient	0.081 mm ⁻¹	
F(000)	764	
F(000) Crystal size	764 0.211 x 0.102 x 0.056 mm ³	
F(000) Crystal size Theta range for data collection	764 0.211 x 0.102 x 0.056 mm ³ 2.003 to 25.997°.	
F(000) Crystal size Theta range for data collection Index ranges	764 0.211 x 0.102 x 0.056 mm ³ 2.003 to 25.997°. -8≤h≤12, -24≤k≤24, -12≤l≤	12
F(000) Crystal size Theta range for data collection Index ranges Reflections collected	764 0.211 x 0.102 x 0.056 mm ³ 2.003 to 25.997°. -8≤h≤12, -24≤k≤24, -12≤l≤ 5677	12
F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections	764 0.211 x 0.102 x 0.056 mm ³ 2.003 to 25.997°. -8≤h≤12, -24≤k≤24, -12≤l≤ 5677 1892 [R(int) = 0.0368]	12
F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242°	764 $0.211 \ge 0.102 \ge 0.056 \text{ mm}^3$ $2.003 \ge 0.25.997^\circ$. $-8 \le h \le 12, -24 \le k \le 24, -12 \le 1 \le 32$ 5677 1892 [R(int) = 0.0368] 100.0 %	12
F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction	764 $0.211 \ge 0.102 \ge 0.056 \text{ mm}^3$ $2.003 \ge 0.25.997^\circ$. $-8 \le h \le 12, -24 \le k \le 24, -12 \le 1 \le 3$ 5677 1892 [R(int) = 0.0368] 100.0 % Semi-empirical from equival	12 lents
F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission	764 $0.211 \ge 0.102 \ge 0.056 \text{ mm}^3$ $2.003 \ge 0.25.997^\circ$. $-8 \le h \le 12, -24 \le k \le 24, -12 \le 1 \le 32$ 5677 1892 [R(int) = 0.0368] 100.0 % Semi-empirical from equival 0.7456 and 0.6452	12 lents
F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method	764 $0.211 \ge 0.102 \ge 0.056 \text{ mm}^3$ $2.003 = 0.25.997^\circ$. $-8 \le h \le 12, -24 \le k \le 24, -12 \le 1 \le 32$ 5677 1892 [R(int) = 0.0368] 100.0 % Semi-empirical from equival 0.7456 and 0.6452 Full-matrix least-squares on	12 lents F ²
F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters	764 $0.211 \ge 0.102 \ge 0.056 \text{ mm}^3$ $2.003 \ge 0.25.997^\circ$. $-8 \le h \le 12, -24 \le k \le 24, -12 \le 1 \le 32$ 5677 1892 [R(int) = 0.0368] 100.0 % Semi-empirical from equiva 0.7456 and 0.6452 Full-matrix least-squares on 1892 / 1 / 133	12 lents F ²
F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	764 $0.211 \ge 0.102 \ge 0.056 \text{ mm}^3$ $2.003 \ge 0.25.997^\circ$. $-8 \le h \le 12, -24 \le k \le 24, -12 \le 1 \le 32$ 5677 1892 [R(int) = 0.0368] 100.0 % Semi-empirical from equiva 0.7456 and 0.6452 Full-matrix least-squares on 1892 / 1 / 133 1.197	12 lents F ²

R indices (all data)	R1 = 0.0596, wR2 = 0.1283
Absolute structure parameter	1.5(10)
Extinction coefficient	n/a
Largest diff. peak and hole	0.193 and -0.138 e.Å ⁻³

7.2 Crystal data of5-methyl-4-phenyl-1*H*-imidazole(CCDC 1882199)

Empirical formula	$C_{10}H_{10}N_2$	
Formula weight	158.20	
Temperature	296 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 9.612(3) Å	α= 90°.
	b = 7.441(2) Å	β= 90°.
	c = 24.001(7) Å	γ= 90°.
Volume	1716.6(9) Å ³	
Z	8	
Density (calculated)	1.224 Mg/m ³	
Absorption coefficient	0.075 mm ⁻¹	
F(000)	672	
Crystal size	0.12 x 0.1 x 0.05 mm ³	
Theta range for data collection	1.697 to 27.497°.	

Index ranges	-12≤h≤12, -9≤k≤9, -24≤l≤31
Reflections collected	12822
Independent reflections	1974 [R(int) = 0.0580]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6851
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1974 / 0 / 110
Goodness-of-fit on F ²	1.103
Final R indices [I>2sigma(I)]	R1 = 0.0565, wR2 = 0.1100
R indices (all data)	R1 = 0.1112, wR2 = 0.1333
Extinction coefficient	n/a
Largest diff. peak and hole	0.125 and -0.217 e.Å ⁻³

7.3 Crystal data of 3-(2,2-dimethyl-5-phenyl-2H-imidazol-4-yl)-1H-indole(CCDC 1882198)

Empirical formula	$C_{19}H_{17}N_3$	
Formula weight	287.35	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 8.8979(10) Å	α= 90°.

	b = 16.1189(18) Å	$\beta = 98.182(3)^{\circ}.$
	c = 10.7902(12) Å	γ= 90°.
Volume	1531.8(3) Å ³	
Ζ	4	
Density (calculated)	1.246 Mg/m ³	
Absorption coefficient	0.075 mm ⁻¹	
F(000)	608	
Crystal size	0.180 x 0.130 x 0.080 mm ³	
Theta range for data collection	2.288 to 25.996°.	
Index ranges	-10≤h≤10, -19≤k≤19, -9≤l≤13	
Reflections collected	9181	
Independent reflections	3004 [R(int) = 0.0397]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivale	nts
Max. and min. transmission	0.7457 and 0.6486	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	3004 / 0 / 206	
Goodness-of-fit on F ²	1.028	
Final R indices [I>2sigma(I)]	R1 = 0.0511, wR2 = 0.1135	
R indices (all data)	R1 = 0.0787, wR2 = 0.1279	
Extinction coefficient	0.0055(12)	
Largest diff. peak and hole	0.183 and -0.162 e.Å ⁻³	

8. NMR spectra

