SUPPORT INFORMATION

Effects of alkali and transition metal-doped TiO₂ hole blocking layers on the perovskite solar

cells obtained by two-steps sequential deposition method in air and vacuum

U. Nwankwo^{a,b,c,d,}, Siphelo Ngqoloda^e, Agnes C. Nkele^a, Christopher J. Arendse^e, Kenneth I. Ozoemena^f,

A.B.C. Ekwealor^a, Rajan Jose^g, Malik Maaza^{c,d}, Fabian I. Ezema^{a,c,d1*}

^aDepartment of Physics and Astronomy, University of Nigeria Nsukka Nigeria

^bDepartment of Physics/Geology/Geophysics, Alex EkwuemeFederal UniversityNdufu-Alike,Ikwo, Nigeria

^c Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old

Faure road, Somerset West 7129, P.O.Box 722, Somerset West, Western Cape Province, South Africa

^dUNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University

of South Africa (UNISA), Muckleneuk ridge, P.O. Box 392, Pretoria, South Africa

^eDepartment of Physics and Astronomy, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa

^f Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag 3, P O Wits, Johannesburg 2050, SOUTH AFRICA

^gNanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

^{*}Corresponding author: F.I. Ezema; <u>fabian.ezema@unn.edu.ng</u>

Figure S1: EDX Spectra of (a) Pristine TiO_2 (b) Cs- TiO_2 and (c) Y- TiO_2 . The EDX measurements were performed along with the SEM imaging for the pristine, Cs- and Y-doped TiO_2 and the elemental composition of the dopant was confirmed in the material.

Figure S2: EDX Spectra of perovskite material on (a) Pristine TiO_2 (b) Cs- TiO_2 and (c) Y- TiO_2 . The EDX measurement was performed along with the SEM imaging for the perovskite absorber layers grown on pristine, Cs- and Y-doped TiO_2 and the elemental composition of the dopant and perovskite material were confirmed in the spectrum.

Figure S3: Optical transmittance spectra of the pristine, Cs-doped and Y-doped TiO_2 . The optical transmittance spectra for Bare FTO substrate (black), Pristine TiO_2 (red), Cs-doped TiO_2 (blue) and Y-doped TiO_2 (green) measured in the UV-vis region of the electromagnetic spectrum prior to the deposition of the perovskite absorber layers.

Figure S4: SEM image of Perovskite layer grown by CVD. The SEM image show a larger grain size compare to the perovskite layer grown by spin coating. The estimated average grain size of the perovskite layer grown by CVD is $0.857 \pm 0.012 \mu m$.

Figure S5: (a) Current -voltage (I-V) curve for perovskite layer deposited on Y-doped TiO₂ for vacuum processed (b) Estimated perovskite solar cell photovoltaic parameters for perovskite absorber layer on Y-doped TiO₂ with high short-circuit current densities (J_{sc}) exceeding 25 mA/cm². This cell was measured along with the cell presented in the manuscript. The current-voltage (I-V) characteristics was measured with Keithley 2420 source meter under standard simulated solar irradiation of 100 mW/cm² and AM 1.5 at room temperature. The active area of the solar cell was 0.0512 cm² as defined by the shadow mask used for the solar testing.

Figure S6: (a) Current -voltage (I-V) curve for perovskite layer deposited on Y-doped TiO_2 for vacuum processed (b) Estimated perovskite solar cell photovoltaic parameters of another perovskite absorber layer grown on Y-TiO₂ layer. Measurements repeated on another to perovskite solar cell grown with the growth condition to compare with the short-circuit current density (J_{sc}) value presented in the main manuscript.

Figure S7: (a) Current -voltage (I-V) curve for perovskite layer deposited on Y-doped TiO_2 for vacuum processed (b) Estimated perovskite solar cell photovoltaic parameters of another perovskite absorber layer grown on Y-TiO₂ layer.

Figure S8: (a) Current -voltage (I-V) curve for perovskite layer deposited on Y-doped TiO_2 for vacuum processed (b) Estimated perovskite solar cell photovoltaic parameters of another perovskite absorber layer grown on Y-TiO₂ layer. Measurements repeated on another to perovskite solar cell grown with the growth condition to compare with the short-circuit current density (J_{sc}) value presented in the main manuscript. Fig. S4 - S7 show that the short-circuit current density for all the perovskite absorber layer used in this work are high than 25 mA/cm².