Supplementary Information

Polypyrrole modified magnetic reduced graphene oxide nanocomposites: Synthesis, characterization and its application for highly selective lead adsorption Zhanmeng Liu ^{a, b, *}, Zhimin Gao ^a, Lichun Xu ^a, and Fengping Hu ^a ^a School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, P.R. China ^b School of Civil Engineering and Architecture, Nanchang Institute of Technology, Nanchang 330099, China * Corresponding author

Corresponding author E-mail: <u>ustblzm@sina.com</u> Tel: 86-791-87046054 Fax:86-791-87046027

Chart and Chart description

Fig. S1 N_2 adsorption-desorption isotherms of Fe₃O₄/rGO (a) and PPy-FG (b); the corresponding BJH adsorption pore distributions curve (inset).

Kinetic models	Equations	Parameters description
Pseudo-first-order	$q_t = q_e (1 - e^{-K_1 t})$	q_t is the adsorption capacity of the adsorbent at time t, t (min) is the contact
Pseudo-second-order	$q_t = \frac{q_e^2 K_2 t}{1 + q_e K_2 t}$	time, ^{<i>q_e</i>} is the adsorption capacity at equilibrium, K ₁ (min ⁻¹) and K ₂ (g/mg·min) are the rate constants

Tab. S1 Description of the kinetic models

Туре	Equations	Parameters description
Langmuir q _e		$q_{e(mg/g)}$ is the equilibrium adsorption capacity, $C_{e(mg/L)}$ is
	$q_m K_L C_e$	equilibrium concentration, $q_m(mg/g)$ is the maximum
	$q_e = \frac{1}{1 + K_L C_e}$	adsorption capacity and $K_L(L/mg)$ is the Langmuir adsorption
		constant
Freundlich	$q_e = K_F C_e^{1/n}$	$K_F(mg/g)$ is Freundlich affinity coefficient and n is Freundlich
		constant

Tab. S2 Description of the equilibrium isotherm equations

Tab. S3 Description of the adsorption thermodynamics equations

Туре	Equations	Parameters description
Van't Hoff	$\ln K = \frac{\Delta S^{\theta}}{R} - \frac{\Delta H^{\theta}}{RT}$	ΔG^{θ} (kJ/mol) denotes the change in
		Gibb's energy, R is the ideal gas constant
		(8.314J/mol/K), T (K) is the absolute
	$K = \frac{q_e}{C_e}$	temperature, K (L/g) is thermodynamic
		equilibrium constant. $q_{e}(mg/g)$ and
Gibbs free energy		$C_{e(mg/L)}$ are the equilibrium adsorption
	$\Delta G^{\theta} = \Delta H^{\theta} - T \Delta S^{\theta}$	capacity and equilibrium concentration at
		temperature T, respectively. ΔH^{θ}
		(kJ/mol) and ΔS^{θ} (kJ/mol/K) are the
		changes in enthalpy and entropy,
		respectively. The ΔH° and ΔS° values are
		calculated
		from the slope and intercept of the linear
		plot of $\ln K$ versus 1/T.