S1

Electronic Supporting Information

A Molecular Electron Density Theory Study of the Participation of Tetrazines in Aza-Diels-Alder Reactions

Luis R. Domingo,^{1*} Mar Ríos-Gutiérrez,^{1,2} and Patricia Pérez^{3*}

 ¹ Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
² Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
³ Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Computational and Theoretical Chemistry Group, Av. República 498, 8370146 Santiago, Chile. E-mail: domingo@utopia.uv.es; p.perez@unab.cl

Index

- S2 Figure with the geometries of MCa and MCh.
- S3 Figure with the attractor positions of the ELF valence basins of the relevant IRC structures of the ADA reaction between dinitro tetrazine 14a and TME 15.
- S4 Figure with the attractor positions of the ELF valence basins of the TS1a-h.
- **S5** Table with MPW95/6-311G(d,p) Global CDFT reactivity indices for the studied reagents.
- S6 Tables with the MPW95/6-311G(d,p) electronic energies, enthalpies, entropies and Gibbs free energies for the stationary points involved in the domino reactions of the series tetrazine derivatives 14a-h with TME 15.
- S8 Table with the MPW95/6-311G(d,p) electronic energies, enthalpies, entropies and Gibbs free energies for the stationary points involved in the domino reactions of the series tetrazine derivatives 14f-h with TCE 18.
- S9 Table with the MPWB1K/6-311G(d,p) unique imaginary frequency of TS1a-k and TS2a-k.

Figure S1. MPMWB95/6-311(d,p) geometries of the MCs **MCa** and **MCh**. The distances are given in Angstroms. Values in DCM are given in parentheses.

Figure S2. Attractor positions of the ELF valence basins of the IRC structures, S0 - S4, defining the five phases characterizing the molecular mechanism of the polar ADA reaction between dinitro tetrazine 14a and TME 15, TS1a and 15a are also included.

Figure S3. Attractor positions of the ELF valence basins of the **TS1a-h**. The electron populations, in average number of electrons, is given in e.

	R	μ	η	ω	N
TCE 18		-7.35	6.09	4.44	0.00
14a	NO_2	-6.92	6.01	3.98	0.47
14b	COCF ₃	-6.50	5.56	3.80	1.11
14c	CF ₃	-6.25	6.03	3.24	1.13
14d	СНО	-5.98	5.74	3.12	1.54
14e	COMe	-5.55	5.85	2.63	1.92
14f	Н	-5.17	6.03	2.22	2.21
14g	OMe	-4.94	5.91	2.07	2.50
14h	Me	-4.75	5.90	1.91	2.70
Ethylene 2		-3.67	9.90	0.68	1.78
TME 15		-2.64	8.85	0.40	3.33

Table S1. MPW95/6-311G(d,p) electronic chemical potential μ , chemical hardness η , global electrophilicity ω , and global nucleophilicity *N*, in eV, for the studied reagents.

Table S2. MPW95/6-311G(d,p) electronic energies (E, in a.u.), enthalpies (H, in a.u.), entropies (S, in cal/mol.K) and Gibbs free energies (G, in a.u.), computed at 25 °C and 1 atm in DCM, for the stationary points involved in the domino reactions of the series tetrazine derivatives **14a-d** with TME **15**.

	E	Н	S	G
15	-235.762490	-235.587197	83.6	-235.626919
N2	-109.503466	-109.494303	45.7	-109.516020
14a	-705.149383	-705.080595	97.9	-705.127111
Mca	-940.922268	-940.674856	139.2	-940.741013
TS1a	-940.912397	-940.666115	125.2	-940.725597
16a	-940.970454	-940.720548	120.3	-940.777724
TS2a	-940.943065	-940.695819	123.5	-940.754490
17a	-831.529971	-831.292073	121.6	-831.349837
14b	-1196.907292	-1196.808467	127.2	-1196.868915
MCb	-1432.679571	-1432.401999	172.1	-1432.483772
TS1b	-1432.660915	-1432.384802	155.7	-1432.458802
16b	-1432.710327	-1432.430657	147.2	-1432.500576
TS2b	-1432.687818	-1432.410889	152.4	-1432.483282
17b	-1323.276623	-1323.008965	150.5	-1323.080485
14c	-970.314012	-970.239771	106.1	-970.290182
MCc	-1206.086454	-1205.832324	149.2	-1205.903192
TS1c	-1206.062581	-1205.809544	132.8	-1205.872633
16c	-1206.123165	-1205.867072	130.6	-1205.929146
TS2c	-1206.097969	-1205.844381	130.6	-1205.906414
17c	-1096.683435	-1096.439244	128.8	-1096.500435
14d	-522.842940	-522.761816	90.3	-522.804719
MCd	-758.613679	-758.355212	133.1	-758.418447
TS1d	-758.591740	-758.333398	120.8	-758.390792
16d	-758.640010	-758.378397	114.6	-758.432846
TS2d	-758.620460	-758.361296	119.3	-758.417958
17d	-649.199426	-648.949699	117.1	-649.005329

Table S3. MPW95/6-311G(d,p) electronic energies (E, in a.u.), enthalpies (H, in a.u.), entropies (S, in cal/mol.K) and Gibbs free energies (G, in a.u.), computed at 25 °C and 1 atm in DCM, for the stationary points involved in the domino reactions of the series tetrazine derivatives **14e-h** with TME **15**.

	E	Н	S	G
14e	-601.469316	-601.329645	103.5	-601.378816
Mce	-837.241281	-836.923300	150.4	-836.994750
TS1e	-837.216513	-836.898310	133.3	-836.961668
16e	-837.265269	-836.943881	127.4	-837.004412
TS2e	-837.243974	-836.925040	132.5	-836.987995
17e	-727.828883	-727.519393	130.1	-727.581208
14f	-296.250369	-296.191733	68.0	-296.224042
MCf	-532.019808	-531.782661	118.8	-531.839099
TS1f	-531.992498	-531.756747	103.4	-531.805878
16f	-532.050019	-531.810586	98.4	-531.857330
TS2f	-532.023820	-531.787310	99.5	-531.834573
17f	-422.601918	-422.375955	94.6	-422.420890
14g	-525.274277	-525.143621	93.1	-525.187838
MCg	-761.044139	-760.734621	137.7	-760.800025
TS1g	-761.004197	-760.696710	125.1	-760.756165
16g	-761.059871	-760.750670	119.2	-760.807294
TS2g	-761.045961	-760.737557	121.1	-760.795116
17g	-651.638842	-651.339490	117.7	-651.395400
14h	-374.869781	-374.753117	83.8	-374.792915
MCh	-610.638501	-610.344321	125.7	-610.404055
TS1h	-610.602603	-610.307359	114.6	-610.361792
16h	-610.657750	-610.359038	109.8	-610.411208
TS2h	-610.633376	-610.337438	113.1	-610.391199
17h	-501.216475	-500.930536	106.8	-500.981266

Table S4. MPW95/6-311G(d,p) electronic energies (E, in a.u.), enthalpies (H, in a.u.), entropies (S, in cal/mol.K) and Gibbs free energies (G, in a.u.), computed at 25 °C and 1 atm in DCM, for the stationary points involved in the domino reactions of the series tetrazine derivatives **14f-h** with TCE **18**.

	Е	Н	S	G
18	-447.412441	-447.353755	93.7	-447.398282
14f	-296.250369	-296.191734	68.0	-296.224044
MCi	-743.671571	-743.552230	129.4	-743.613714
TS1i	-743.609098	-743.492206	112.5	-743.545636
19i	-743.660889	-743.540928	110.0	-743.593187
TS2i	-743.639276	-743.522318	111.7	-743.575377
20i	-634.221429	-634.114355	107.4	-634.165384
14g	-525.274277	-525.143619	93.1	-525.187836
MCj	-972.696831	-972.505410	153.6	-972.578394
TS1j	-972.631587	-972.442820	135.7	-972.507281
19j	-972.667580	-972.477027	136.6	-972.541921
TS2j	-972.657040	-972.468551	136.0	-972.533160
20j	-863.255869	-863.075764	131.7	-863.138355
14h	-374.869781	-374.753117	83.8	-374.792915
MCk	-822.292731	-822.115362	140.6	-822.182181
TS1k	-822.234947	-822.059083	126.8	-822.119334
19k	-822.280144	-822.102589	118.0	-822.158641
TS2k	-822.259275	-822.083558	127.5	-822.144158
20k	-712.845780	-712.679087	120.5	-712.736340

TS1a	-286.2929
TS1b	-337.4865
TS1c	-350.5034
TS1d	-379.2771
TS1e	-389.2782
TS1f	-432.0035
TS1g	-474.5200
TS1h	-473.2847
TS1i	-432.0035
TS1j	-568.1225
TS1k	-548.4563
TS2a	-582.5346
TS2b	-583.5926
TS2c	-576.9181
TS2d	-579.7784
TS2e	-578.0920
TS2f	-616.9326
TS2g	-597.8970
TS2h	-600.4108
TS2i	-619.0927
TS2j	-578.7566
TS2k	-601.7070

Table S5. MPWB1K/6-311G(d,p) unique imaginary frequency of the TSs **TS1a-k** and **TS2a-k** computed in DCM, in cm⁻¹.