Supporting Information

Cu/TEMPO catalyzed dehydrogenative 1,3-dipolar cycloaddition for the synthesis of spirooxindoles as potential antidiabetic agents.

Chitrala Teja,^a Spoorthy N. Babu,^b Ayesha Noor,^b J. Arul Daniel,^c S. Asha Devi,^c and Fazlur Rahman Nawaz Khan.^{a*}

 ^aOrganic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
 ^bCentre for Bio Separation Technology, Vellore Institute of Technology, Vellore-632014.
 ^cDepartment of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore-632014.
 ^{a*}Corresponding author, Prof. F. Nawaz Khan, <u>nawaz_f@yahoo.co.in</u>. Mobile No. +91-9444234609.

Table of contents

1. Characterization data for the synthesized compounds	S2-9
2. NMR (¹ H & ¹³ C), FT-IR and HRMS spectra's of the compounds	S10-49
3. 2D NMR Studies of the compound 4aa	S50-53
4. Control experiment & ¹ H NMR studies	S54-56
5. Tables, figures and other information	S57-69

Characterization data for the synthesized compounds

2'-benzoyl-1'-(p-tolyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (4aa):

Light brown solid, Mp: 134-136 °C, 2h, 85% yield (179 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.40 (t, *J* = 7.5 Hz, 4H), 7.34 – 7.24 (m, 2H), 7.12 (q, *J* = 6.7 Hz, 5H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.60 (d, *J* = 7.7 Hz, 1H), 4.92 (d, *J* = 11.5 Hz, 1H), 4.22 (m, *J* = 9.8, 6.2 Hz, 1H), 3.93 – 3.84 (t, 1H), 2.74 – 2.57 (m, 2H), 2.29 (s, 3H), 2.03 (dt, *J* = 12.0, 6.8 Hz, 1H), 1.96 – 1.83 (m, 2H), 1.75 (dt, *J* = 13.1, 7.4 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 197.0, 181.3, 140.7, 137.0, 136.7, 136.5, 132.8, 129.3, 128.5, 128.5, 128.0,

127.9, 127.8, 127.4, 125.1, 122.2, 110.1, 73.8, 72.0, 64.4, 52.6, 48.2, 30.7, 27.2, 21.0 ppm, IR (neat): v = 3184, 2976, 2866, 1737, 1467, 752, 692 cm⁻¹. LC-MS calcd for $C_{28}H_{26}N_2O_2$ m/z 422.19 [M+], found 423.2 [M+].

1'-(4-fluorophenyl)-2'-(4-methylbenzoyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-

one (4ab): Off-white solid, Mp: 124-126 °C, 2h, 87% yield (191 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 7.49 – 7.42 (m, 2H), 7.39 (d, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 7.5 Hz, 1H), 7.13 (t, *J* = 7.1 Hz, 3H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.81 (t, *J* = 8.2 Hz, 2H), 6.65 (d, *J* = 7.7 Hz, 1H), 4.88 (d, *J* = 11.4 Hz, 1H), 4.27 – 4.17 (m, 1H), 3.89 (t, *J* = 10.6 Hz, 1H), 2.74 – 2.56 (m, 2H), 2.28 (s, 3H), 2.02 (dt, *J* = 18.6, 6.4 Hz, 1H), 1.95 – 1.83 (m, 2H), 1.74 (td, *J* = 13.3, 6.9 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 195.4, 181.4,

166.7, 164.2, 140.7, 136.6, 136.6, 133.5, 133.5, 130.6, 130.5, 129.4, 129.4, 127.9, 127.5, 125.1, 122.3, 115.3, 115.1, 110.2, 73.8, 72.0, 64.4, 52.6, 48.2, 30.7, 27.3, 21.0 ppm, IR (neat): v = 3196, 2922, 2866, 1730, 1465, 1230, 732 cm⁻¹. LC-MS calcd for C₂₈H₂₅FN₂O₂ m/z 440.19 [M+], found 439.2 [M+].positive mode

4'-(4-methoxyphenyl)-1'-methyl-3'-(4-methylbenzoyl)spiro[indoline-3,2'-pyrrolidin]-2-one (4ba):

White solid, Mp:165-167 °C, 2h, 82% yield (174 mg), ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 7.50 – 7.38 (m, 4H), 7.18 (d, J = 7.3 Hz, 1H), 7.09 (d, J = 7.9 Hz, 2H), 7.01 (td, J = 7.7, 1.2 Hz, 1H), 6.92 (td, J = 7.6, 0.9 Hz, 1H), 6.61 (d, J = 7.6 Hz, 1H), 6.56 (t, J = 5.8 Hz, 2H), 4.58 – 4.51 (m, 2H), 3.69 – 3.62 (m, 1H), 3.60 (s, 3H), 3.49 – 3.43 (m, 1H), 2.27 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 180.7, 163.2, 140.7, 138.5, 136.3, 130.3, 130.0, 129.3, 129.0, 128.0, 127.2, 126.9, 122.9, 113.3, 109.5, 74.0,

 $\overline{62.2, 60.5, 55.2, 44.3, 35.0, 21.0}$ ppm, IR (neat): v = 3267, 2933, 2841, 1666, 1597, 1255, 1170, 748 cm⁻¹. LC-MS calcd for C₂₇H₂₆N₂O₃ m/z 426.19 [M+], found 427.2 [M+]. positive mode

4'-(4-chlorophenyl)-1'-methyl-3'-(4-methylbenzoyl)spiro[indoline-3,2'-pyrrolidin]-2-one (4bb):

Brown solid, Mp:143-145 °C, 2h, 86% yield (184 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.11 (dd, *J* = 12.8, 8.1 Hz, 5H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.57 (d, *J* = 7.7 Hz, 1H), 4.54 – 4.45 (m, 2H), 3.66 (dd, *J* = 12.2, 5.7 Hz, 1H), 3.49 – 3.42 (m, 1H), 2.29 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 180.3, 140.5, 139.1, 138.2, 136.5, 135.6, 129.4, 129.2, 129.1, 128.3, 128.0, 126.9, 126.8, 123.0, 109.5, 73.7, 62.9,

60.5, 44.1, 35.0, 21.0 ppm, IR (neat): v = 3138, 3028, 2920, 1703, 1467, 1089, 746 cm⁻¹. LC-MS calcd for $C_{26}H_{23}CIN_2O_2 \text{ m/z} 430.14 \text{ [M+]}$, found 431.3 [M+]. positive mode

4'-(2-fluorophenyl)-1'-methyl-3'-(4-methylbenzoyl)spiro[indoline-3,2'-pyrrolidin]-2-one (4bc):

White solid, Mp:136-138 °C, 2h, 80% yield (165 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.99 (s, 1H), 7.50 (dd, J = 8.4, 5.5 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.3 Hz, 1H), 7.05 – 6.88 (m, 6H), 6.58 (d, J = 7.7 Hz, 1H), 4.54 (dt, J = 27.6, 9.2 Hz, 2H), 3.64 (t, J = 9.1 Hz, 1H), 3.52 – 3.42 (m, 1H), 2.22 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 180.5, 162.9, 160.5, 143.6, 140.7, 137.3, 134.6, 129.6, 129.5, 129.4, 129.1, 128.8, 128.7, 127.8, 126.9, 126.8, 122.9, 115.5, 115.3, 109.5, 73.7, 62.6,

60.4, 43.8, 34.9, 21.4 ppm, IR (neat): v = 3165, 3028, 2845, 1681, 1602, 1467, 1224, 750 cm⁻¹. LC-MS calcd for C₂₆H₂₃FN₂O₂ m/z 414.17 [M+], found 414.9 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-phenyl-1',2',5',6',7',7a'-hexahydrospiro-

[indoline-3,3'-pyrrolizin]-2-one (5a): Brown solid, Mp: 190-192 °C, 2h, 81% yield (236 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.88 (m, 2H), 7.73 – 7.66 (m, 1H), 7.64 – 7.53 (m, 4H), 7.47 (d, J = 2.2 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.28 (dd, J = 5.6, 3.0 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.07 – 6.96 (m, 2H), 6.87 (t, J = 7.6 Hz, 2H), 6.67 (d, J = 7.6 Hz, 2H), 6.54 (d, J = 7.7 Hz, 1H), 4.68 (dd, J = 12.4, 8.2 Hz, 1H), 3.70 (d, J = 12.5 Hz, 1H), 3.04 (dt, J = 9.8, 5.0 Hz, 1H), 2.85 (dd, J = 15.3, 8.2 Hz, 1H), 2.66

(dd, J = 12.4, 5.1 Hz, 1H), 1.91 (s, 3H), 1.88 – 1.78 (m, 2H), 1.54 – 1.48 (m, 1H), 1.36 (dt, J = 12.1, 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl3) δ 200.7, 178.6, 156.4, 147.2, 145.9, 141.3, 138.9, 134.5, 132.3, 131.3, 131.1, 131.0, 130.5, 130.2, 130.0, 129.8, 129.2, 128.6, 128.5, 127.9, 127.3, 126.4, 125.9, 125.5, 125.3, 123.0, 111.3, 73.3, 72.5, 68.3, 51.7, 46.5, 31.7, 28.1, 22.3 ppm. IR (neat): v = 3176, 3061, 2916, 2850, 1712, 1467, 1178, 698 cm⁻¹. HRMS calcd for C₃₇H₃₀ClN₃O₂ m/z 583.2027 [M+], found 583.2024 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(p-tolyl)-1',2',5',6',7',7a'-exahydrospiro-

[indoline-3,3'-pyrrolizin]-2-one (5b): Pale brown solid, Mp: 205-207 °C, 2h, 84% yield (250 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 8.9 Hz, 1H), 7.75 (t, J = 7.4 Hz, 1H), 7.61 – 7.50 (m, 3H), 7.40 – 7.30 (m, 2H), 7.15 (t, J = 7.2 Hz, 1H), 6.97 (d, J = 7.8 Hz, 3H), 6.90 (s, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.68 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 7.6 Hz, 1H), 4.27 (d, J = 11.6 Hz, 1H), 3.77 – 3.60 (m, 2H), 2.51 – 2.43 (m, 1H), 2.33 (s, 3H), 2.23 – 2.14 (m, 1H), 1.91 – 1.82 (m, 1H), 1.82 –

1.73 (m, 2H), 1.52 (s, 3H), 1.50 – 1.43 (m, 1H). ¹³C NMR (100 MHz, CDCl3) δ 21.0, 22.3, 28.1, 31.6, 46.5, 51.4, 68.1, 72.4, 73.2, 111.2, 123.0, 125.4, 125.6, 125.9, 127.4, 127.7, 128.6, 129.1, 129.2, 129.7, 130.0, 130.3, 130.4, 130.9, 131.1, 131.4, 132.3, 134.5, 135.8, 135.9, 141.2, 145.9, 147.1, 156.4, 178.4, 200.7 ppm. IR (neat): v = 3242, 3055, 2916, 2850, 1728, 1467, 1176, 704 cm⁻¹. HRMS calcd for C₃₈H₃₂ClN₃O₂ m/z 597.2183 [M+], found 597.2180 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(4-chlorophenyl)-1',2',5',6',7',7a'-hexahydro-

spiro[indoline-3,3'-pyrrolizin]-2-one (5c): Pale yellow solid, Mp: 248-250 °C, 3h, 75% yield (231 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.9 Hz, 1H), 7.73 (dd, J = 11.0, 5.7 Hz, 1H), 7.70 – 7.62 (m, 3H), 7.55 (d, J = 7.1 Hz, 1H), 7.48 (d, J = 2.2 Hz, 1H), 7.38 (d, J = 3.1 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.30 (s, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.07 (dd, J = 14.0, 7.1 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 5.1 Hz, 1H), 6.61

 $\begin{bmatrix} \text{Chemical Formula: } C_{37}H_{29}Cl_2N_3O_2 \end{bmatrix} - 6.55 \text{ (m, 2H), } 4.59 \text{ (dd, J} = 12.3, 8.3 \text{ Hz, 1H), } 3.68 \text{ (d, J} = 12.2 \text{ Hz, 1H), } 3.03 \text{ (dt, J} = 9.7, 7.6 \text{ Hz, 2H), } 2.68 \text{ (t, J} = 7.4 \text{ Hz, 1H), } 2.13 \text{ (s, 3H), } 1.88 \text{ (s, 1H), } 1.79 - 1.70 \text{ (m, 1H), } 1.45 - 1.34 \text{ (m, 2H).} {}^{13}\text{C} \text{ NMR} \text{ (100 MHz, CDCl3) } \delta \text{ 206.9, } 178.7, 155.9, 145.6, 145.0, 141.0, 134.9, 134.6, 134.0, } 133.1, 132.4, 131.3, 130.6, 130.3, 129.9, 129.5, 129.4, 129.4, 129.2, 128.9, 128.6, 127.5, 126.3, 126.2, 125.0, \\ 124.6, 121.5, 109.5, 75.5, 65.0, 58.1, 53.1, 50.2, 30.3, 28.3, 23.4 \text{ ppm. IR (neat): } v = 3302, 3228, 2914 \text{ cm}^{-1}. \\ \text{HRMS calcd for } C_{37}H_{29}Cl_2N_3O_2 \text{ m/z } 617.1637 \text{ [M+], found } 617.1635 \text{ [M+].} \end{bmatrix}$

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(2-chlorophenyl)-1',2',5',6',7',7a'-hexahydro-

spiro[indoline-3,3'-pyrrolizin]-2-one (5d): Pale yellow solid, Mp: 234-236 °C, 3h, 72% yield (222 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.5 Hz, 1H), 7.88 – 7.78 (m, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.57 (dd, J = 9.0, 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.35 (t, J = 7.1 Hz, 2H), 7.14 (ddd, J = 25.1, 15.5, 7.6 Hz, 4H), 6.92 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.63 (d, J = 7.5 Hz, 1H), 5.93 (d, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 2.44 (ddd, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 2.44 (ddd, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 5.93 (d, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 2.44 (ddd, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 5.93 (d, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 5.94 (ddd, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 5.94 (ddd, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 5.94 (ddd, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 5.94 (ddd, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 5.94 (ddd, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 5.94 (ddd, J = 7.3 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.53 (d, J = 6.3 Hz, 1H), 5.94 (ddd, J = 7.3 Hz, 1H), 5.95 (d, J = 6.3 Hz, 1H), 5.95 (d, J = 7.3 Hz, 1H), 5.95 (d, J = 7.3 Hz, 1H), 5.95 (d, J = 6.3 Hz, 1H), 5.95 (d, J = 7.3 Hz, 1H), 5.95 (d,

10.1, 7.6, 4.3 Hz, 1H), 2.17 (dd, J = 16.6, 7.8 Hz, 1H), 1.89 – 1.78 (m, 2H), 1.70 (ddd, J = 24.1, 15.6, 7.2 Hz, 2H), 1.49 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 200.1, 178.2, 156.4, 147.0, 145.8, 141.3, 136.6, 134.9, 134.4, 132.4, 131.4, 131.3, 130.6, 130.0, 129.3, 129.0, 128.9, 127.5, 127.3, 127.2, 127.1, 125.9, 125.4, 125.3, 123.3, 111.3, 72.9, 67.7, 46.4, 45.9, 31.1, 29.7, 28.1, 22.2 ppm. IR (neat): v = 3074, 2914, 1714, 1469, 1193, 752 cm⁻¹. HRMS calcd for C₃₇H₂₉Cl₂N₃O₂ m/z 617.1637 [M+], found 617.1633 [M+].

1'-(2-bromophenyl)-2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1',2',5',6',7',7a'-hexahydro-

spiro[indoline-3,3'-pyrrolizin]-2-one (5e): Brown solid, Mp: 194-196 °C, 2h, 76% yield (251 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 7.8 Hz, 1H), 7.89 – 7.79 (m, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.49 (dd, J = 8.9, 4.9 Hz, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.17 (dt, J = 22.6, 7.5 Hz, 2H), 7.05 – 6.94 (m, 2H), 6.90 (s, 1H), 6.82 (d, J = 7.7 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 5.90 (d, J = 7.0 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.51 (dd, J = 13.2, 6.5 Hz, 1H), 2.45 (ddd, J = 9.9, 6.3, 3.9 Hz,

1H), 2.21 - 2.11 (m, 1H), 1.82 (dt, J = 16.1, 7.0 Hz, 2H), 1.76 - 1.69 (m, 2H), 1.49 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 206.9, 178.7, 155.9, 145.6, 145.0, 141.0, 134.9, 134.6, 134.0, 133.1, 132.4, 131.3, 130.6, 130.3, 129.9, 129.5, 129.4, 129.4, 129.2, 128.9, 128.6, 127.5, 126.3, 126.2, 125.0, 124.6, 121.5, 109.5, 75.5, 65.0, 58.1, 53.1, 50.2, 30.3, 28.3, 23.4 ppm. IR (neat): v = 3211, 2916, 2850, 1716, 1469, 1176, 702 cm⁻¹. HRMS calcd for C₃₇H₃₉BrClN₃O₂ m/z 661.1132 [M+], found 661.1129 [M+].

1'-(3-bromophenyl)-2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1',2',5',6',7',7a'-hexahydro-

spiro[indoline-3,3'-pyrrolizin]-2-one (5f): Brown solid, Mp: 170-175 °C, 2h, 70% yield (231 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.9 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.68 – 7.62 (m, 3H), 7.53 – 7.48 (m, 2H), 7.40 (s, 2H), 7.32 (d, J = 7.5 Hz, 1H), 7.17 (dd, J = 15.9, 8.1 Hz, 2H), 7.07 (t, J = 7.6 Hz, 1H), 6.78 (t, J = 7.9 Hz, 1H), 6.74 (s, 1H), 6.59 (d, J = 7.7 Hz, 2H), 4.46 (dd, J = 12.2, 8.4 Hz, 1H), 3.63 (d, J = 12.2 Hz, 1H), 3.15 (dd, J = 15.6, 8.6 Hz, 1H), 3.01 (td, J = 9.5, 6.6 Hz, 1H), 2.67

 $(t, J = 7.6 Hz, 1H), 2.20 (s, 3H), 1.89 (dd, J = 12.7, 5.9 Hz, 1H), 1.72 (dd, J = 21.6, 10.1 Hz, 2H), 1.61 - 1.51 (m, 1H). ¹³C NMR (100 MHz, CDCl3) <math>\delta$ 200.6, 178.2, 156.4, 147.2, 145.9, 141.4, 141.2, 134.2, 132.4, 131.5, 131.1, 131.0, 130.8, 130.6, 130.0, 129.8, 129.6, 129.4, 128.5, 127.3, 127.2, 125.7, 125.4, 125.3, 123.1, 122.5, 111.3, 73.3, 72.1, 68.5, 51.1, 46.4, 31.8, 28.2, 22.2 ppm. IR (neat): v = 2978, 2850, 1712, 1471, 1382, 1155, 910, 727 cm⁻¹. HRMS calcd for C₃₇H₂₉BrClN₃O₂ m/z 661.1132 [M+], found 661.1130 [M+].

1'-(4-bromophenyl)-2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1',2',5',6',7',7a'-hexahydro-

spiro[indoline-3,3'-pyrrolizin]-2-one (5g): Brown solid, Mp: 180-182 °C, 2h, 75% yield (247 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.7 Hz, 1H), 7.86 (d, J = 8.9 Hz, 1H), 7.75 (t, J = 7.3 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.50 (d, J = 2.2 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.29 (d, J = 8.4 Hz, 2H), 7.19 – 7.12 (m, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.93 (s, 1H), 6.82 (dd, J = 5.7, 2.6 Hz, 1H), 6.70 (d, J = 8.4 Hz, 2H), 6.53 (d, J = 7.6 Hz, 1H), 4.25 (d, J = 11.3 Hz, 1H), 3.75 – 3.61 (m, 2H), 2.49 – 2.42 (m,

1H), 2.18 (dt, J = 9.8, 7.6 Hz, 1H), 1.91 – 1.75 (m, 3H), 1.48 (s, 3H), 1.46 – 1.41 (m, 1H). ¹³C NMR (100 MHz, CDCl3) δ 200.5, 178.1, 156.4, 147.2, 145.9, 141.2, 138.1, 134.6, 132.5, 131.6, 131.5, 131.1, 130.9, 130.6, 130.0, 129.7, 129.6, 129.3, 128.7, 127.3, 125.9, 125.4, 125.3, 123.1, 120.2, 111.3, 73.2, 72.2, 68.4, 51.0, 46.5, 31.7, 28.1, 22.21 ppm. IR (neat): v = 3250, 2916, 2850, 1724, 1469, 1178, 748 cm⁻¹. HRMS calcd for C₃₇H₂₉BrClN₃O₂ m/z 661.1132 [M+], found 661.1131 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(thiophen-2-yl)-1',2',5',6',7',7a'-hexahydro-

spiro[indoline-3,3'-pyrrolizin]-2-one (5h): Pale brown solid, Mp: 210-212 °C, 2h, 69% yield (203 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 1H), 7.80 – 7.72 (m, 1H), 7.72 – 7.54 (m, 5H), 7.51 (s, 1H), 7.46 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.20 (td, J = 7.7, 1.1 Hz, 1H), 7.07 (dd, J = 7.6, 6.8 Hz, 1H), 6.86 (dd, J = 5.1, 1.0 Hz, 1H), 6.66 – 6.56 (m, 2H), 6.35 (d, J = 3.4 Hz, 1H), 4.65 (dd, J = 12.2, 8.3 Hz, 1H), 3.98 (d, J = 12.3 Hz, 1H), 3.04 (td, J = 9.8, 5.8 Hz, 1H), 2.87 (dd, J =

15.2, 7.9 Hz, 1H), 2.75 - 2.63 (m, 1H), 2.08 (s, 3H), 1.92 - 1.79 (m, 2H), 1.55 - 1.49 (m, 1H), 1.34 (dd, J = 10.8, 6.9 Hz, 1H). 13 C NMR (100 MHz, CDCl3) δ 208.2, 178.4, 156.0, 145.7, 144.8, 141.9, 136.8, 135.3, 134.8, 132.4, 131.3, 130.8, 130.4, 129.9, 129.5, 129.5, 129.3, 126.6, 126.3, 126.0, 125.7, 124.9, 124.6, 122.1, 109.9, 75.3, 65.1, 57.9, 53.7, 50.3, 28.0, 26.1, 23.3 ppm. IR (neat): v = 3302, 3226, 2914, 2848, 1728, 1467, 1176, 702 cm⁻¹. HRMS calcd for C₃₅H₂₈ClN₃O₂S m/z 589.1591[M+], found 589.1588 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(naphthalen-1-yl)-1',2',5',6',7',7a'-hexahydro-

spiro[indoline-3,3'-pyrrolizin]-2-one (5i): White solid, Mp: 254-256, °C, 3h, 70% yield (221 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 8.6 Hz, 1H), 8.21 (d, J = 6.4 Hz, 1H), 7.96 – 7.80 (m, 4H), 7.72 – 7.62 (m, 2H), 7.54 – 7.43 (m, 4H), 7.38 (t, J = 7.6 Hz, 1H), 7.05 (td, J = 7.7, 1.1 Hz, 2H), 6.88 (td, J = 7.7, 2.6 Hz, 2H), 6.50 (d, J = 7.7 Hz, 2H), 4.69 (d, J = 3.6 Hz, 1H), 3.62 (p, J = 9.0 Hz, 2), 2.61 (td, J = 8.6, 2.6 Hz, 2H), 2.13 (dd, J = 7.7 Hz, 2H), 4.69 (dd, J = 7.7 Hz, 2H), 4.69 (dd, J = 7.7 Hz, 2H), 3.62 (p, J = 9.0 Hz, 2), 2.61 (td, J = 8.6, 2.6 Hz, 2H), 2.13 (dd, J = 7.7 Hz, 2H), 4.69 (dd, J = 7.7 Hz, 2H), 4.69 (dd, J = 7.7 Hz, 2H), 4.69 (dd, J = 7.7 Hz, 2H), 3.62 (p, J = 9.0 Hz, 2), 2.61 (td, J = 8.6, 2.6 Hz, 2H), 2.13 (dd, J = 7.7 Hz, 2H), 4.69 (dd, J = 7.7 Hz, 2H), 4.69 (dd, J = 7.7 Hz, 2H), 3.62 (p, J = 9.0 Hz, 2), 2.61 (td, J = 8.6, 2.6 Hz, 2H), 2.13 (dd, J = 7.7 Hz, 2H), 3.62 (p, J = 9.0 Hz, 2), 3.61 (td, J = 8.6, 2.6 Hz, 2H), 3.61 (td, J = 8.6) (dd, J = 7.7 Hz, 2H), 3.61 (td

 127.3, 126.5, 126.3, 126.2, 126.1, 125.9, 125.4, 125.3, 123.2, 123.0, 123.0, 122.1, 108.9, 74.4, 68.8, 68.7, 59.1, 47.6, 27.4, 22.3, 20.9 ppm. IR (neat): v = 3176, 2918, 1701, 1467, 1180, 748 cm⁻¹. HRMS calcd for $C_{41}H_{32}CIN_{3}O_{2}$ m/z 633.2183 [M+], found 633.2180 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(2-fluorophenyl)-1',2',5',6',7',7a'-hexahydro-

spiro[indoline-3,3'-pyrrolizin]-2-one (5j): White solid, Mp: 199-201 °C, 2h, 75% yield (225 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.6 Hz, 1H), 7.86 – 7.81 (m, 1H), 7.76 (t, J = 7.5 Hz, 1H), 7.65 (s, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 10.6 Hz, 1H), 7.08 – 7.01 (m, 1H), 6.99 – 6.92 (m, 1H), 6.85 (t, J = 7.9 Hz, 2H), 6.60 (d, J = 7.6 Hz, 1H), 6.20 (t, J = 7.3 Hz, 1H), 4.38 (d, J = 12.0 Hz, 1H), 4.08 (dd, J

= 11.8, 9.4 Hz, 1H), 3.66 (dd, J = 15.2, 8.3 Hz, 1H), 2.49 – 2.40 (m, 1H), 2.17 (dd, J = 16.8, 8.2 Hz, 1H), 1.86 (dd, J = 10.7, 4.9 Hz, 1H), 1.82 – 1.70 (m, 2H), 1.57 (dd, J = 18.6, 10.3 Hz, 1H), 1.51 (s, 3H). ¹³C NMR (100 MHz, CDC13) δ 207.0, 178.9, 155.6, 145.6, 144.9, 141.2, 134.9, 134.6, 132.5, 132.5, 131.3, 130.6, 130.3, 130.1, 129.5, 129.5, 129.4, 128.9, 128.8, 127.1, 126.2, 125.5, 125.0, 125.0, 124.0, 121.9, 115.2, 109.6, 75.0, 64.9, 56.4, 50.2, 46.6, 28.4, 26.2, 23.4 ppm. IR (neat): v = 3201, 2916, 2850, 1712, 1616, 1469, 1178, 752 cm⁻¹. HRMS calcd for C₃₇H₂₉ClFN₃O₂ m/z 601.1932 [M+], found 601.1930 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(2-chloroquinolin-3-yl)-1',2',5',6',7',7a'-hexa-

hydrospiro[indoline-3,3'-pyrrolizin]-2-one (6a): Brown solid, Mp: 205-207 °C, 3h, 70% yield (233 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 7.6 Hz, 1H), 8.03 (dd, J = 8.6, 4.2 Hz, 1H), 7.90 (dd, J = 16.8, 8.3 Hz, 2H), 7.75 – 7.61 (m, 4H), 7.58 – 7.51 (m, 2H), 7.49 (d, J = 7.4 Hz, 1H), 7.44 (s, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.22 (t, J = 7.3 Hz, 1H), 6.99 (s, 1H), 6.87 (t, J = 7.7 Hz, 1H), 6.69 (t, J = 7.5 Hz, 1H), 6.53 (d, J = 6.5 Hz, 1H), 4.62 (dd, J = 11.8, 9.4 Hz, 1H), 4.39 (d, J = 11.9 Hz, 1H), 3.72 – 3.58 (m,

1H), 2.55 – 2.45 (m, 1H), 2.21 (dd, J = 16.3, 8.1 Hz, 1H), 1.89 – 1.82 (m, 2H), 1.77 (dd, J = 15.7, 7.9 Hz, 1H), 1.72 – 1.66 (m, 1H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 178.2, 156.5, 151.8, 146.8, 146.4, 146.0, 141.4, 134.6, 132.4, 131.6, 131.4, 131.4, 131.3, 130.9, 130.1, 130.0, 129.7, 129.6, 129.4, 128.6, 128.4, 127.6, 127.2, 127.0, 126.7, 125.5, 125.2, 125.1, 123.5, 122.4, 111.6, 73.1, 68.2, 46.4, 31.2, 30.3, 29.7, 28.2, 22.1 ppm. IR (neat): v = 2922, 2852, 1718, 1467, 1188, 750 cm⁻¹. HRMS calcd for C₄₀H₃₀Cl₂N₄O₂ m/z 668.1746 [M+], found 668.1744 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(2-chloro-8-methylquinolin-3-yl)-

1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (6b): Brown solid, Mp: 228-230 °C, 3h, 68% yield (231 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 7.6 Hz, 1H), 7.88 (dd, J = 7.9, 4.3 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.57 (s, 2H), 7.50 (d, J = 3.8 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 7.14 (s, 1H), 7.05 (t, J = 7.7 Hz, 1H), 6.92 - 6.83 (m, 2H), 6.67 (t, J = 7.5 Hz, 1H), 6.50 (dd, J = 14.4, 7.6 Hz, 2H), 4.66 - 4.57 (m, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.63 (d, J = 4.9 Hz, 2H), 4.66 - 4.57 (m, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.63 (d, J = 4.9 Hz, 2H), 4.66 - 4.57 (m, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.63 (d, J = 4.9 Hz), 4.66 - 4.57 (m, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.63 (d, J = 4.9 Hz), 4.66 - 4.57 (m, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.63 (d, J = 4.9 Hz), 4.66 - 4.57 (m, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.63 (d, J = 4.9 Hz), 4.66 - 4.57 (m, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.63 (d, J = 4.9 Hz), 4.66 - 4.57 (m, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.63 (d, J = 4.9 Hz), 4.56 (d, J = 11.9 Hz), 4.56 (d, J = 11.9 Hz), 4.56 (d, J = 4.9 Hz), 4.56 (d, J

1H), 2.79 (s, 3H), 2.61 (dd, J = 11.7, 5.8 Hz, 1H), 2.49 (dd, J = 11.5, 5.4 Hz, 1H), 2.24 – 2.10 (m, 2H), 1.88 – 1.82 (m, 2H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 199.9, 178.1, 156.5, 146.8, 146.0, 141.3, 136.6, 134.6, 132.4, 132.3, 131.6, 131.5, 131.2, 130.9, 130.2, 129.7, 129.5, 128.6, 128.0, 127.3, 127.0, 126.5, 125.5, 125.2, 125.1, 123.5, 122.4, 111.5, 73.0, 46.4, 31.2, 30.3, 29.7, 28.2, 22.2, 21.8 ppm. IR (neat): v =3211, 2916, 2850, 1697, 1467, 1178, 750 cm⁻¹. HRMS calcd for C₄₁H₃₂Cl₂N₄O₂ m/z 682.1902 [M+], found 682.1899 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(2-chloro-7-methylquinolin-3-yl)-

1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (6c): Pale brown solid, Mp: 226-228 °C, 3h, 65% yield (221 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 7.5 Hz, 1H), 7.89 (dd, J = 14.4, 7.7 Hz, 2H), 7.78 (d, J = 10.4 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.59 – 7.52 (m, 3H), 7.50 – 7.42 (m, 2H), 7.38 (t, J = 7.7 Hz, 1H), 7.22 (t, J = 7.5 Hz, 2H), 6.92 (d, J = 9.1 Hz, 1H), 6.86 (t, J = 6.4 Hz, 1H), 6.69 (t, J = 7.5 Hz, 1H), 6.53 (d, J = 7.4 Hz, 1H), 4.59 (t, J = 10.4 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H), 4.59 (t, J = 10.4 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H), 4.59 (t, J = 10.4 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H), 4.59 (t, J = 10.4 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H), 4.59 (t, J = 10.4 Hz, 1H), 4.37 (d, J = 11.9 Hz)

1H), 3.62 (d, J = 6.0 Hz, 1H), 2.59 (s, 3H), 2.55 – 2.44 (m, 2H), 1.87 – 1.83 (m, 1H), 1.73 (s, 2H), 1.66 – 1.61 (m, 1H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 199.9, 178.1, 156.5, 146.8, 146.0, 141.3, 136.6, 134.6, 132.4, 132.3, 131.6, 131.5, 131.2, 130.9, 130.2, 129.7, 129.5, 128.6, 128.0, 127.3, 127.0, 126.5, 125.5, 125.2, 125.1, 123.5, 122.4, 111.5, 73.0, 46.4, 31.2, 30.3, 29.7, 28.2, 22.2, 21.8 ppm. IR (neat): v = 2920, 1705, 1469, 1192, 705 cm⁻¹. HRMS calcd for C₄₁H₃₂Cl₂N₄O₂ m/z 682.1902 [M+], found 682.1900 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(2-chloro-6-methylquinolin-3-yl)-

1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (6d): Pale brown solid, Mp: 220-222 °C, 2h, 72% yield (245 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 7.6 Hz, 1H), 7.91 (dd, J = 17.5, 6.8 Hz, 3H), 7.76 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 11.9 Hz, 3H), 7.48 (d, J = 7.7 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.22 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 6.2 Hz, 1H), 6.89 (s, 1H), 6.86 – 6.81 (m, 1H), 6.70 (t, J = 7.6 Hz, 1H), 6.54 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 7.6 Hz, 1H), 4.59 (t, J = 10.6 Hz, 1H), 4.38 (t, J = 10.6 Hz, 1H), 4.3 J = 6.5 Hz, 1H), 2.65 (s, 3H), 2.51 (t, J = 13.4 Hz, 2H), 2.20 (dd, J = 16.3, 8.1 Hz, 1H), 1.90 – 1.82 (m, 2H), 1.79 – 1.73 (m, 1H), 1.51 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 199.9, 178.1, 156.5, 146.8, 146.0, 141.3, 136.6, 134.6, 132.4, 132.3, 131.6, 131.5, 131.2, 130.9, 130.2, 129.7, 129.5, 128.6, 128.0, 127.3, 127.0, 126.5, 125.5, 125.2, 125.1, 123.5, 122.4, 111.5, 73.0, 46.4, 31.2, 30.3, 29.7, 28.2, 22.2, 21.8 ppm. IR (neat): v = 3302, 2916, 1728, 1467, 1176, 705 cm⁻¹. HRMS calcd for C₄₁H₃₂Cl₂N₄O₂ m/z 682.1902 [M+], found 682.1904 [M+].

2'-(6-chloro-2-methyl-4-phenylquinoline-3-carbonyl)-1'-(2-chloro-6,8-dimethylquinolin-3-yl)-

1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (6e): Brown solid, Mp: 230-232 °C, 2h, 70% yield (243 mg), ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.6 Hz, 1H), 7.89 (t, J = 9.2 Hz, 2H), 7.58 (dd, J = 12.3, 3.6 Hz, 3H), 7.51 – 7.45 (m, 1H), 7.45 (s, 1H), 7.41 – 7.35 (m, 2H), 7.21 (d, J = 7.6 Hz, 1H), 7.05 (t, J = 7.7 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.69 (t, J = 7.4 Hz, 1H), 6.52 (d, J = 7.5 Hz, 1H), 4.63 – 4.55 (m, 1H), 4.35 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 5.4

Hz, 1H), 2.74 (s, 3H), 2.59 (s, 3H), 2.48 (dd, J = 10.2, 4.0 Hz, 1H), 2.24 – 2.10 (m, 2H), 1.88 – 1.82 (m, 2H), 1.80 – 1.75 (m, 1H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 177.9, 175.9, 156.6, 146.7, 146.0, 144.3, 141.2, 140.6, 136.1, 136.1, 134.6, 132.4, 132.3, 131.4, 130.8, 130.1, 129.5, 129.0, 128.6, 127.3, 127.1, 126.4, 125.5, 125.3, 125.2, 124.4, 123.5, 122.1, 111.4, 108.8, 73.0, 59.1, 47.6, 46.4, 31.1, 28.2, 22.2, 21.7, 20.9, 17.7 ppm. IR (neat): v = 3196, 2958, 2918, 1716, 1469, 1193, 707 cm⁻¹. HRMS calcd for C₄₂H₃₄Cl₂N₄O₂ m/z 696.2059 [M+], found 696.2057 [M+].

Figure S1: ¹H and ¹³C NMR spectra of compound 4aa in CDCl₃

Figure S2: FT-IR and LC-MS spectra of compound 4aa

Signature SIF VIT VELLORE PTA4FCHL-2

Figure S3: ¹H and ¹³C NMR spectra of compound 4ab in CDCl₃

Figure S4: FT-IR and LC-MS spectra of compound 4ab

Figure S5: ¹H and ¹³C NMR spectra of compound 4ba in CDCl₃

Figure S6: FT-IR and LC-MS spectra of compound 4ba

Figure S7: ¹H and ¹³C NMR spectra of compound 4bb in CDCl₃

Figure S8: FT-IR and LC-MS spectra of compound 4bb

Signature SIF VIT VELLORE ISC-PTA2FB

Figure S9: ¹H and ¹³C NMR spectra of compound 4bc in CDCl₃

Figure S10: IR spectra of compound 4bc

Figure S11: ¹H and ¹³C NMR spectra of compound 5a in CDCl₃

326.1979 348.931

350

400.5315

اطلب

400

436.9876 458.939

450

558.2014 583.2024

550

519.1674

500

20-

m/z

97.2174

Ц**ңыі ці**. 100 142.9390

150

129.0076

226.5224

198.6746

200

170.8503

238.4338

250

269.2537

287.4533

300

Figure S13: ¹H and ¹³C NMR spectra of compound 5b in CDCl₃

CODE-1A

Scan: 3670 TIC=1541872 Base=5.3%FS #ions=577 RT=19.35

Figure S14: FT-IR & HRMS spectra of compound 5b

Figure S15: ¹H and ¹³C NMR spectra of compound 5c in CDCl₃

Figure S16: FT-IR & HRMS spectra of compound 5c

Figure S17: ¹H and ¹³C NMR spectra of compound 5d in CDCl₃

Figure S18: FT-IR & HRMS spectra of compound 5d

20-

m/z

Figure S19: ¹H and ¹³C NMR spectra of compound 5e in CDCl₃

CODE-7 Scan: 3378 TIC=4548208 Base=22.2%FS #ions=527 RT=17.89

Figure S20: FT-IR & HRMS spectra of compound 5e

Signature SIF VIT VELLORE IST-3-BR-2

Figure S21: ¹H and ¹³C NMR spectra of compound 5f in CDCl₃

Figure S22: FT-IR & HRMS spectra of compound 5f

Signature SIF VIT VELLORE TQLBR-1

Figure S23: ¹H and ¹³C NMR spectra of compound 5g in CDCl₃

Figure S24: FT-IR & HRMS spectra of compound 5g

Signature SIF VIT VELLORE TQ2-THA-2

Figure S25: ¹H and ¹³C NMR spectra of compound 5h in CDCl₃

Figure S26: FT-IR & HRMS spectra of compound 5h

Signature SIF VIT VELLORE TQNAP-1

Figure S27: ¹H and ¹³C NMR spectra of compound 5i in CDCl₃

CODE-13 Scar: 2268 TIC=1056848 Base=3.7%FS #ions=809 RT=12.34

Figure S28: FT-IR & HRMS spectra of compound 5i

Signature SIF VIT VELLORE IST-2-F-1

Figure S29: ¹H and ¹³C NMR spectra of compound 5j in CDCl₃

CODE-14

Scan: 2657 TIC=1160160 Base=6.2%FS #ions=777 RT=14.28

Figure S30: FT-IR & HRMS spectra of compound 5j

Signature SIF VIT VELLORE IST-CLF-1

Figure S31: ¹H and ¹³C NMR spectra of compound 6a in CDCl₃

Scan: 83 TIC=1033088 Base=2.9%FS #ions=875 RT=1.41

Figure S32: FT-IR & HRMS spectra of compound 6a

Signature SIF VIT VELLORE IST-OTQ-1

Figure S33: ¹H and ¹³C NMR spectra of compound 6b in CDCl₃

Figure S34: FT-IR & HRMS spectra of compound 6b

Figure S35: ¹H and ¹³C NMR spectra of compound 6c in CDCl₃

CODE-15

Scan: 3392 TIC=3427296 Base=14.6%FS #ions=552 RT=17.96

Figure S36: FT-IR & HRMS spectra of compound 6c

Signature SIF VIT VELLORE IST-PTQ-1

Figure S37: ¹H and ¹³C NMR spectra of compound 6d in CDCl₃

CODE-16

Figure S38: FT-IR & HRMS spectra of compound 6d

Figure S39: ¹H and ¹³C NMR spectra of compound 6e in CDCl₃

Figure S40: FT-IR & HRMS spectra of compound 6e

Figure S41: Plotted ¹H, ¹H-COSY, HSQC-NMR Spectrum of 4aa

Figure S43: ¹H, ¹H-COSY NMR Spectrum of 4aa

Figure S44: HSQC and HMBC NMR Spectrum of 4aa

Figure S45: ¹H, ¹³C NMR chemical shifts along with selected HMBC correlations.

2D-NMR Spectroscopic studies:

The structures of 4, 5 and 6 were identified using ¹H, ¹³C, and 2D-NMR spectroscopic studies, as mentioned the illustrative representative example 4aa Fig. 4, from HSQC (Heteronuclear single quantum coherence) spectrum (see supporting file page no-51, 52&53) of 4aa shows sharp singlet at 2.28 ppm. Which correlates with peak at 21.01 ppm assigned to benzoyl group of -CH₃, A sharp doublet proton at 4.92 ppm correlates with 64.43 ppm assigned to C-3 at pyrrolizine ring, as well as, two methine protons as triplet at 3.84-3.93 ppm and multiplet at 4.21-4.23 ppm correlates with 52.61 and 72.09 ppm, are assigned to C-4 and C-5 carbons at pyrrolizine ring. Two protons of methylene at 1.73-1.76 and 2.00-2.03 ppm as two multiplets due to internal cross-couplings, which correlates with 30.74 ppm, are assigned to C-6. A multiplet of two protons around 1.87-1.92 ppm correlates with 27.29 ppm are assigned to C-7, another two protons of methylene as multiplets around 2.57-2.74 ppm correlates with 48.27 ppm, are assigned to C-8 carbon. From ¹H-¹H COSY spectrum, A sharp doublet proton at C-3 carbon in pyrrolizine ring correlates with C-4 proton, Possibly C-5 multiplet proton correlates with C-4, Also separately correlates with two protons at C-6. There is an internal cross-coupling that appears between C-6 carbon, The multiplet two protons at C-7 cross peak correlation with C-8, also an internal cross-coupling from two protons at C-8. Further, From the HMBC (Heteronuclear Multiple Bond coherence) spectrum, C-3 proton correlates with 52.61 ppm (C-4), 73.81 ppm (C-2), 125.14 ppm (C-4'), 137.09 ppm (C-2''), 181.31 ppm (C-2'), and 197.06 ppm (C-1"). C-4 proton correlates with 30.74 ppm (C-6), 64.54 ppm (C-3), 72.09 ppm (C-5), 127.95 ppm (C-2"), 136.71 ppm (C-1"), and 197.06 ppm (C-1"). C-5 proton correlates with 48.27 ppm (C-8). C-6a proton correlates with 48.27 ppm (C-8) and 52.61 ppm (C-4), C-6b proton correlates with 52.61 ppm (C-4) and 72.09 ppm (C-5). C-7 proton correlates with 30.74 ppm (C-6), 48.27 ppm (C-8) and 72.09 ppm (C-5). C-8 proton correlates with 73.81 ppm (C-2). In addition, the ¹H NMR spectrum showed singlet at 8.60 ppm which can be attributed to amide –NH proton in the isatin substitution. Hence from ¹H, ¹³C, ¹H–¹H COSY, HSQC and HMBC NMR studies, we have confirmed the structure, regio and stereo-chemistry of the compound 4aa.

Figure S47: The ¹H NMR spectra of control experimental studies (1) Pure 3-(4-fluorophenyl)-1-(p-tolyl)propan-1-one (2) Mixture of 3-(4-fluorophenyl)-1-(p-tolyl)propan-1-one 7, with α -TEMPO-adducted 3-(4-fluorophenyl)-1-(p-tolyl)propan-1one (3) mixtures of -TEMPO-adducted 3-(4-fluorophenyl)-1-(p-tolyl)propan-1-one with (E)-3-(4-fluorophenyl)-1-(ptolyl)prop-2-en-1-one (chalcone) isolated from the reaction (4) Pure (E)-3-(4-fluorophenyl)-1-(p-tolyl)prop-2-en-1-one 1d (chalcone). (5) Reaction mixture of chalcone, Isatin and L-proline (Azomethine ylide) (6) Mixture of Azomethine ylide, chalcone and desired product 4ab. (7) Desired (1'-(4-fluorophenyl)-2'-(4-methylbenzoyl)-1',2',5',6',7',7a'hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one) spirane product.

Monitoring the reaction by ¹H NMR analysis (Mechanistic studies)

Additionally, the more solid evidence for the reaction pathway was observed by monitoring the reaction with ¹H-NMR analysis. Fig S46. Spectra-(1) Shows the ¹H NMR spectra of pure alkylated ketone product; After 15 min., time interval, in that ¹H-NMR spectra, A shows the α,β-saturated-CH₂ protons around 3-3.5 ppm, and B shows -CH₃ 2.5 ppm. From spectra-(2) Fig 3. After 30 min. Interval, which shows the mixture of 3-(4-fluorophenyl)-1-(p-tolyl)propan-1-one (Alkylated product), with α -TEMPOadducted 3-(4-fluorophenyl)-1-(p-tolyl)propan-1-one, In that C Shows α -TEMPO-adducted C-H proton at 4.6ppm according to previous literature report¹ Weiping Su et al. propose the mechanism for dehydrogenation using Cu-TEMPO catalyst. Spectra-(3) After 45min. The ¹H NMR spectra shows, The mixtures of α -TEMPO-substituted ketone with (E)-3-(4-fluorophenyl)-1-(p-tolyl)prop-2en-1-one (chalcone), In that C Shows α -TEMPO-adducted C-H proton at 4.6ppm., along with D α -CH proton of chalcone, Which confirms that the formation of enone (chalcone) formation through α -TEMPO-substituted ketone.¹ From spectra-(4) After 1 h time interval the reaction mixture was analyzed by ¹H NMR-Spectroscopy, which shows the pure α,β -unsaturated enone (chalcone) 1d. From spectra-(5) In the sequential addition of isatin and L-proline under the same reaction medium, after 1 h 15 min. the formation of azomethine ylide along with chalcone. Spectra-(6) the same reaction was analysed after 1 h 30 min., NMR spectra show the mixture of azomethine ylide, chalcone and desired spirane product. Spectra-(7) shows the pure product of (1'-(4-fluorophenyl)-2'-(4-methylbenzoyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one) spirooxindole after 2 h. the doublet proton of chiral -CH comes around 4.9 ppm., and other chiral protons comes around 4-4.5 ppm., and **F** shows the amide-NH proton around 9 ppm.

Table S1. Optimization studies for preparation of spirooxindolopyrrolizidines^{a,b}

Entry	Cat. (mol %)	Α	Additives	Solvent	Temp in °C	Time (hrs)	Yield %
1	Mn(OAc) ₂	TEMPO	2,2'-Bipyridyl	DMF	100	9 h	56
2	Co(OAc) ₂	TEMPO	2,2'-Bipyridyl	DMF	100	8 h	43
3	Ni(OAc) ₂	TEMPO	2,2'-Bipyridyl	DMF	100	12 h	45
4	Cu(OAc) ₂	TEMPO	2,2'-Bipyridyl	DMF	100	6 h	65
5	Zn(OAc) ₂	TEMPO	2,2'-Bipyridyl	DMF	100	10 h	50
6	$Pd(OAc)_2$	TEMPO	2,2'-Bipyridyl	DMF	100	13 h	55
7	Ag ₂ O	TEMPO	2,2'-Bipyridyl	DMF	100	12 h	-
8	$CuSO_4$	TEMPO	2,2'-Bipyridyl	DMF	100	20 h	-
9	CuCl ₂	TEMPO	2,2'-Bipyridyl	DMF	100	18 h	-
10	CuBr ₂	TEMPO	2,2'-Bipyridyl	DMF	100	18 h	-
11	Cu(OTf) ₂	TEMPO	2,2'-Bipyridyl	DMF	100	10 h	15
12	Cu(OAc) ₂	TEMPO	1,10- phenanthroline	DMF	100	8 h	43
13	Cu(OAc) ₂	TEMPO	DBU	DMF	100	15 h	35
14	Cu(OAc) ₂	TEMPO	DABCO	DMF	100	18 h	25
15	Cu(OAc) ₂	TEMPO	pyridine	DMF	100	12 h	15
16	Cu(OAc) ₂	NHPI	2,2'-Bipyridyl	DMF	100	10 h	15
17	Cu(OAc) ₂	tBuOOH	2,2'-Bipyridyl	DMF	100	15 h	15
18	Cu(OAc) ₂	TEMPO	2,2'-Bipyridyl	1,4- Dioxane	100	10 h	40
19	Cu(OAc) ₂	TEMPO	2,2'-Bipyridyl	DMSO	100	8 h	52
20	Cu(OAc) ₂	TEMPO	2,2'-Bipyridyl	Toluene	100	16 h	35
21	Cu(OAc) ₂	TEMPO	2,2'-Bipyridyl	TBAA (1 eq.)	80	2 h	85
22	Cu(OAc) ₂	TEMPO	2,2'-Bipyridyl	TMAB	80	2 h	60
23	Cu(OAc) ₂	TEMPO	2,2'-Bipyridyl	TEAB	80	2 h	63
24	Cu(OAc) ₂	TEMPO	2,2'-Bipyridyl	TBAB	80	3 h	70
25	Cu(OAc) ₂	TEMPO	2,2'-Bipyridyl	TBAI	80	4 h	68
26	Cu(OAc) ₂	ТЕМРО	2,2'-Bipyridyl	TBAA (0.5 eq.)	80	2 h	82
27	Cu(OAc) ₂	ТЕМРО	2,2'-Bipyridyl	TBAA (0.25 eq.)	80	3 h	70

^a**Reaction Conditions:** Saturated ketone, **1aa** (0.5 mmol), Cu(OAc)₂ (10 mol%), TEMPO (0.1 mmol) and 2,2-Bipyridyl (0.1 mmol), in 2 ml of solvent at 100 °C. after sequential addition of Isatin, **2** (0.5 mmol), L-proline **3a** or Sarcosine **3b** (0.6 mmol). ^bTBA-ionic-liquid (1eq) at 80 °C for 1 hour. ^cIsolated yields

TEMPO (0.1 mmol) and 2,2'-Bipyridyl (0.1 mmol), in TBAA (1eq) at 80 °C for 1 hour., Sequential addition of Isatin, 2 (0.5 mmol), L-proline **3a** or Sarcosine **3b** (0.6 mmol) at 80 °C for another 1 h. ^bIsolated yields

S No	Compound	Binding Energy (kcal/mol)				
5.110	Name	Alpha Amylase	Alpha Glucosidase	GLP-1		
1	5a	-8.15	-8.64	-9.51		
2	5b	-7.3	-8.08	-9.47		
3	5c	-7.76	-8.66	-8.31		
4	5d	-7.78	-8.27	-7.46		
5	5e	-7.78	-7.6	-8.11		
6	5f	-8.47	-7.23	-8.21		
7	5g	-7.9	-7.61	-8.15		
8	5h	-9.29	-7.28	-8.39		
9	5i	-8.57	-8.73	-8.4		
10	5j	-8.13	-7.91	-8.55		
11	6a	-9.51	-9.29	-8.85		
12	6b	-9.16	-9.77	-7.56		
13	6c	-9.61	-7.07	-8.6		
14	6d	-8.74	-7.44	-10.2		
15	6e	-9.24	-8.71	-8.95		
16	4aa	-7.81	-7.62	-7.65		
17	4ab	-6.95	-7.04	-7.47		
18	4ba	-6.77	-6.85	-6.66		
19	4bb	-7.79	-7.14	-6.87		
20	4bc	-7.78	-6.57	-7.31		
21	Standard					
	Drug	-0.74	0.32	37.44		

 Table S5: Binding Energy Of The Synthesized Compounds Interactions Obtained From

 AutoDock Analysis.

2.2.1 Molecular docking studies

 α -amylase and α -glucosidase are two vital enzymes present in the digestive system involved in the conversion of carbohydrates into glucose which in turn increases the blood glucose levels. Inhibiting these enzymes can help lower blood glucose level which can be administered for diabetic conditions. **GLP-1** is an incretin that induces the beta cells of the pancreas to produce insulin which helps in the reduction of the blood glucose level. While inhibiting the α -amylase and α -glucosidase can help in lowering the glucose levels enhancing **GLP-1** can also help in the management of diabetes which in turn can help in the management of diabetes. The result obtained has inferred that the synthesized compounds have inhibiting activity against the digestive enzymes and could act as a potential drug for diabetes management.

Figure S48: Interactions of Alpha Amylase with synthesized compounds.

Figure S49: Interactions of Alpha Glycosidase with synthesized compounds.

Table S6. Anti oxidant and anti-diabetic assay of the synthesised derivatives

S.no	Compound name	ABTS	DPPH	Metal chelating	H ₂ O ₂	α-amylase	α- Glucosidase
1	4aa	1.62±0.21	1.46±0.21	0.96±0.23	0.63±0.12	1.47±0.27	1.48±0.32
2	4ab	1.54±0.30	1.22±0.34	6.91±1.10	6.15±1.12	1.11±0.41	1.52±0.35
3	4ba	2.70±0.60	1.23±0.39	3.21±0.76	0.88±0.06	0.99±0.06	1.25±0.24
4	4bb	1.42 ± 0.31	$0.80{\pm}0.07$	0.46 ± 0.08	0.41 ± 0.04	0.98±0.25	1.46±0.31
5	4bc	1.50±0.45	1.68±0.34	0.86 ± 0.09	1.16±0.35	1.52 ± 0.40	2.22±0.57
6	5a	3.25±0.47	2.26±0.13	0.93±0.11	0.92 ± 0.09	NA	0.51±0.19
7	5b	0.49 ± 0.32	0.55 ± 0.04	0.81 ± 0.06	$0.79{\pm}0.02$	NA	2.73±0.52
8	5c	1.57±0.12	1.62±0.43	0.92 ± 0.04	0.85 ± 0.07	NA	0.50 ± 0.03
9	5d	1.11±0.36	1.28±0.32	1.16±0.31	1.50±0.35	NA	1.02 ± 0.34
10	5e	0.79 ± 0.43	0.88 ± 0.09	6.00±0.75	0.21±0.03	NA	0.74±0.13
11	5f	0.55±0.20	0.50 ± 0.06	1.40±0.62	1.52±0.32	NA	0.30 ± 0.05
12	5g	2.72±0.54	2.79±0.32	0.69 ± 0.05	1.27±0.32	NA	0.58 ± 0.06
13	5h	0.41 ± 0.06	0.49±0.03	1.04 ± 0.08	0.78 ± 0.06	0.54 ± 0.14	0.35 ± 0.05
14	5i	0.86 ± 0.09	0.92 ± 0.05	0.77 ± 0.22	0.57 ± 0.09	0.28 ± 0.07	0.31 ± 0.07
15	5j	3.03±0.65	2.09±0.34	0.38 ± 0.07	0.35 ± 0.04	NA	1.12±0.15
16	6a	2.75±0.58	2.71±0.43	0.43 ± 0.04	1.05 ± 0.27	NA	0.41 ± 0.04

17	6b	0.43±0.05	$0.44{\pm}0.08$	0.46 ± 0.08	0.68 ± 0.06	NA	0.26±0.06
18	6c	0.34 ± 0.09	0.36 ± 0.02	0.99 ± 0.09	$0.59{\pm}0.03$	NA	0.32 ± 0.07
19	6d	0.28 ± 0.03	0.34 ± 0.06	0.37 ± 0.03	0.33 ± 0.04	NA	0.24 ± 0.05
20	6e	6.04 ± 0.54	6.98±0.75	0.31 ± 0.02	0.32 ± 0.07	NA	0.27 ± 0.02
21	Ascorbic	0.006 ± 0.002	NA	0.0073 ± 0.00		NA	NA
	acid			2			
22	Gallic acid	NA	0.0055 ± 0.00	NA	0.0045 ± 0.0	NA	NA
			1		01		
23	Acarbose	NA	NA	NA	NA	0.058±0.012	0.046±0.023

2.2.4 QSAR-Studies (quantitative structure-activity relationships)

2.2.4.1 Physicochemical and Pharmacokinetic properties.

Generally, the ability of a drug after oral administration to reach its site of action depends on the drug dissolution in the GIT followed by absorption into systemic circulation, and also on the other pharmacokinetic properties such as distribution, metabolism, and elimination. Nevertheless, the poor pharmacokinetic property of the drug candidate is the main reason for most of the drug discovery failures. Hence, it is worthwhile to predict these properties to identify potential compounds for the next step of drug discovery. The advancement of computer-aided drug design tools give the opportunity to calculate number of physicochemical properties of enormous number of compound libraries and predict the ADMET properties and make decisions faster in identifying potential compound without any tubersome experiments. Recently, several standalone software and online application are growing enormously and some of these prediction tools are also approved by various regulatory agencies in new drug discovery.²

Comp	MW (g/mol)	TPSA	mlogPb	n-ON	n-OH/NH	n-Viol	n-RotB	Vol
4 aa	422.53	49.41	5.27	4	1	1	3	391.44
4ab	440.52	49.41	5.44	4	1	1	3	396.37
4ba	426.52	58.64	4.94	5	1	0	4	393.96
4bb	430.94	49.41	5.56	4	1	1	3	381.95
4bc	414.48	49.41	4.53	4	1	0	3	373.35
5a	584.12	62.30	7.88	5	1	2	4	516.22
5b	598.15	62.30	8.28	5	1	2	4	532.78
5c	618.56	62.30	8.44	5	1	2	4	529.76
5d	618.56	62.30	8.03	5	1	2	4	529.76
5e	663.01	62.30	8.15	5	1	2	4	534.11
5f	663.01	62.30	8.51	5	1	2	4	534.11

Table S7. Physicochemical properties of the synthesized spirooxindole derivatives

6e	697.67	75.19	8.77	6	1	2	4	602.72
6d	683.64	75.19	8.58	6	1	2	4	586.15
6c	683.64	75.19	8.58	6	1	2	4	586.15
6b	683.64	75.19	8.56	6	1	2	4	586.15
6a	669.61	75.19	8.30	6	1	2	4	569.59
5j	602.11	62.30	7.52	5	1	2	4	521.15
5i	634.18	62.30	8.45	5	1	2	4	560.21
5h	590.15	62.30	7.30	5	1	2	4	506.93
5g	663.01	62.30	8.52	5	1	2	4	534.11

Table S8. Pharmacokinetic properties of the synthesized spirooxindole derivatives

	Absorption		Distribution	Toxicity		
СОМР	Water Solubility Log mol/L	Intestinal absorption % absorbed	BBB permeability Log BB	AMES Toxicity	Hepato toxicity	
4 aa	-3.223	92.734	-0.081	Yes	No	
4ab	-3.317	92.776	-0.106	Yes	Yes	
4ba	-3.321	94.527	-0.249	Yes	Yes	
4bb	-3.242	92.029	-0.11	Yes	No	
4bc	-3.423	93.579	-0.285	No	No	
5a	-3.336	92.963	-0.287	No	Yes	
5b	-3.329	92.987	-0.301	No	Yes	
5c	-3.313	91.529	-0.314	No	No	
5d	-3.335	91.604	-0.333	No	No	
5e	-3.331	91.537	-0.334	No	No	
5f	-3.338	92.257	-0.306	No	No	
5g	-3.309	91.462	-0.315	No	No	
5h	-3.402	91.366	-0.31	No	Yes	
5i	-3.027	92.803	-0.294	No	No	
5j	-3.138	93.08	-0.685	No	Yes	
6a	-3.083	92.353	-0.626	No	Yes	
6b	-3.11	93.166	-0.637	No	No	
6c	-3.081	93.022	-0.632	No	No	

6d	-3.104	92.401	-0.637	No	No
6e	-3.129	92.755	-0.644	No	No
Acarbose	-1.99	6.22	-2.712	No	No

References:

- 1. X. Jie, Y. Shang, X. Zhang and W. Su, J. Am. Chem. Soc., 2016, **138**, 5623-5633.
- 2. C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, *Advanced drug delivery reviews*, 1997, **23**, 3-25.
- 3. C. A. Lipinski, *Drug Discovery Today: Technologies*, 2004, **1**, 337-341.