Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplemental information:

Enhanced photocatalytic activity of visible-light-driven ternary WO₃/Ag/Ag₃PO₄ heterojunction: A discussion on electron transfer mechanism

Shengqi Zhang^a, Tao Yu^a, Hui Wen^a, Rui Guo^{a,b,c*}, Juanjuan Xu^{a,b*}, Ruixia Zhong^{a,c*}, Xian Li^{a,c}, Junhua You^d

(a School of Materials Science and Engineering, Northeastern University, Shenyang 110819)

(bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China)

(^cSchool of Resources and Materials, Northeastern University at Qinhuangdao, 066004, China)

(^d School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)

*Corresponding author: <u>guorui@neuq.edu.cn</u> (Rui Guo), <u>1519931572@qq.com</u> (Juanjuan Xu), <u>46028914@qq.com</u> (Ruixia Zhong)

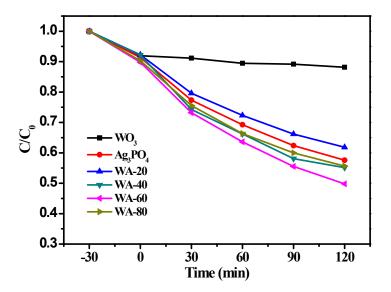


Fig. S1 The degradation of MB of WO₃, Ag₃PO₄ and WA-x.

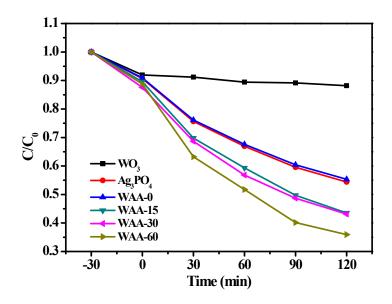


Fig. S2 The degradation of MB of WO_3 , Ag_3PO_4 and WAA-x.