Supporting Information

CO₂ conversion into methanol under ambient conditions using efficient nanocomposite photocatalyst/solar-energy materials in aqueous medium

Mohsen Lashgari^{1, 2*}, Sanaz Soodi¹

Lashgari@iasbs.ac.ir

¹Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

²Center for Research in Climate Change and Global Warming: Hydrogen and Solar Division, Zanjan 45137-66731, Iran

Figure S1: Optimum values of CNT content (3 wt. % of the photocatalyst) and Ni to Fe molar ratio (1:2) for photo-catalytic synthesis of methanol using CO_2 feed in aqueous medium.

Figure S2. XRD patterns of the composite materials under study, along with their components.

Figure S3. XPS diagram of the composite photocatalyst containing all components (For deconvolution of peaks, a smart background was used and fitting of data were performed with a Lorentzian/Gaussian [LG (30)] line-shape).

Figure S4. Raman spectrum of the composite photocatalyst containing all components: the spectrum consistes of two parts, $1100-1900 \text{ cm}^{-1}$ (a) and $0-1100 \text{ cm}^{-1}$ (b), which are related to CNT and NiO/Fe₂O₃ components, respectively.

Here, D and G bands are the characteristic Raman peaks of CNT, verifying its presence in the composite material. The observation of A_{1g} and Eg indicates the formation of Fe₂O₃. The remaining peaks, i.e. LO, 2TO, LO+TO, and 2LO are ascribed to the synthesis of NiO component [Wang et al. Nanoscale Adv. 1, 1200–1206 (2019); Zhang et al. Energy Technol. 6, 263–272 (2018; DOI: 10.1002/ente.201700400); Lu et al. Opt. Express, 19, 16266–16272 (2011); Juma et al. J. Alloys Compd. 723, 866–872 (2017).].

Figure S5: Extra SEM images taken at higher magnification for the binary (first row; CNT/NiO) and ternary (second row; CNT/NiO/Fe₂O₃) composite photocatalysts.

Figure S6: Extra SEM evidence for nano-rod morphology due to Fe_2O_3 presence in the composite photocatalyst. The images were taken at two different magnifications from the ternary photocatalyst synthesized in the absence of NiO, i.e. CNT/Fe₂O₃.

Figure S7: Nitrogen adsorption-desorption plots of the composite photocatalysts.

Figure S8: Diffuse reflectance spectra of CNT, NiO and CNT/NiO, depicted in a wide UV-Vis-NIR spectral region.

Figure S9: Diffuse reflectance spectrum of Fe₂O₃.

Figure S10: Bandgap of the photocatalyst/solar-energy materials, determined through the Kubelka-Munk approach [F(R) is defined as $(1-R)^2/2R$ and R is reflectance; for more details, see references 22 and 26 of the main text].

Figure S11: Calibration diagrams of methanol, oxalic acid, acetic acid and formic acid aqueous solutions determined through HPLC analysis.

Figure S12: Non-liquid [gas phase] products (hydrogen, carbon monoxide and methane) generated during the CO_2 photoconversion process upon the binary and ternary photocatalysts [data were obtained using an online gas chromatograph (GC, SRI instruments 8610C) equipped with TCD and FID detectors connected to the reactor outlet].

No methane was detected for CNT/NiO, suggesting the lack of methyl formation, which is crucial in the synthesis of methane [Schouten et al, Chem. Sci., 2011, 2, 1902]. This evidence indicates by preventing the methane (methyl) formation, why the extent of methanol decreases for the binary photocatalyst [here, the only route for methanol production is $CH_3\dot{O}/\dot{H}$ reaction not $\dot{C}H_3/\dot{O}H$ one; see **eq. 7** of the main text]. On the contrary, in the case of CNT/NiO/Fe₂O₃, both reaction pathways are available for the synthesis of methanol, and CH₄ (the result of $\dot{C}H_3/\dot{H}$ recombination) is the major gas-phase product.

Table S1. A comparison between this work and related studies reported for photocatalytic synthesis of methanol using CO_2 feed in aqueous media.

Photocatalyst	Methanol yield	Explanation	Ref.
CNT/NiO/Fe ₂ O ₃	4382 (µmol/l)	500 W Xenon	This work
(50 mg in 50 ml H ₂ O)		Intensity: 100 mW.cm ⁻² , 2 h illumination	
CNT/NiO (50 mg in 50 ml H ₂ O)	1655 (μmol/l)	"	"
NiO/K ₂ Ta ₂ O ₆	1815	250 W Mercury lamp	
(20 mg in 20 ml H ₂ O)	(µmol/l.g.h)	(wavelength: 365 nm)	[1]
CeO ₂ /Bi ₂ MoO _z		300 W Xenon	
50 mg in 50ml H ₂ O	32.5 (µmol/g)	420 nm cut-off filter	[2]
		5 cm above the reactor, 4 h illumination	
rGO/InVO ₄ /Fe ₂ O ₃		20 W LED	
DMF/H ₂ O/Et ₃ N (3:1:1)	16.9 (mmol/g)	Intensity: not mentioned, 24 h illumination	[3]
o-BiVO4	398.3	300 W Xenon	
0.2g in 160ml H ₂ O	(µmol/g.hr)	Intensity: 100 mW.cm ⁻²	[4]
	2.5	500 W high-pressure Xenon	
TiO₂ nanocrystals 0.05g in 30ml H ₂ O	(µmol/g)	Intensity: 2.5 mW.cm ⁻² UV and 0.12 mW cm ⁻² visible light, 10 h illumination	[5]
CoPc-Rs/Fe ₂ O ₃ NTs	138	Visible light irradiation	[6]
Composite film on Fe sheet, in 0.1 M KHCO ₃	(µmol L ⁻¹ cm ⁻²)	Intensity: not mentioned, 6.5 h illumination under cathodic bias $(-1.3 V_{SCE}; photoelectrochemical)$	
Fe ₂ O ₃ -TiO ₂	319.42 (µmol/g)	250 W Mercury lamp of UV high	[7]
(2 g/L in the presence of		pressure	
sulfite hole scavenger)		Intensity: not mentioned, 7 h illumination at 90 °C	
SnO ₂ /Fe ₂ O ₃	0.69	Xenon lamp with a band-pass filter	
Photocatalyst film in 0.1M KHCO ₃	$(\text{mmol } L^{-1} \text{ cm}^{-2})$	$(\lambda = 420 \text{ nm}, 100 \text{ mW.cm}^{-2}), 6 \text{ h}$ illumination	[8]
MoS2-TiO2	10.6	300 W xenon	
(0.1 g in 200 mL of 1 M NaHCO ₃)	(µmol/g.hr)	Intensity: not mentioned	[9]

Ni/InTaO4	200	20 W white LED, 5 cm distance, 70 h illumination	[10]
acetonitrile, water and TEOA (3:1:1)	(µmol/g)		[10]
In ₂ O ₃ -WO ₃	496	355 high power laser beam, 1.5 cm	
(details: not mentioned)	(µmol/g.hr)	distance	[11]
rGO/ SrTi0.95Fe0.05O3-δ		300 W Xenon (320 nm $\leq \lambda \geq$ 780 nm)	
50 mg in 50 mL of RhB	24.07	Intensity: 160 mW.cm ⁻²	[12]
(10 ⁻⁵ M) and NaOH (0.02M).	(µmol/g.hr)		
g-C ₃ N ₄ /(Cu/TiO ₂)	2500	254 nm UV light, 8 h illumination	
0.2 g in 400 ml 1M NaOH	(µmol/g)	Intensity: 5.4 mW.cm ⁻²	[13]
CdIn ₂ S ₄ / g-C ₃ N ₄	31	300W Xenon with a UV cut-off filter	
0.1 g in 100 ml 0.1M	(µmol/g.hr)	(λ>420nm)	[14]
NaOH solution		Intensity: 15 mW.cm ⁻²	
$\mathbf{Bi}_2\mathbf{WO}_6$	23	300 W Xenon Intensity: not mentioned	[15]
0.2 g III 100 IIII H ₂ O	(µmol/g)		
		300W Xenon with a UV cut-off filter	[16]
$\begin{array}{c} \text{Bi}_2\text{S}_3\\ 20 \text{ mg in } 80 \text{ ml } \text{H}_2\text{O} \end{array}$	320.2	$(\lambda > 420$ nm), 5 cm above the cell	
20 mg m 60 m m ₂ 0	(µmoi/g)		
Bi2MoO6		300 W Xenon	
50 mg in 50 ml H ₂ O	24.8	Intensity: not mentioned	[17]
	(µmol/g)		
WO3	9.77	300W Xenon with a UV cut-off filter	[18]
(details: not mentioned)	(µmol/g)	$(\lambda > 420 \text{nm})$	
		Intensity: not mentioned	
GrO/CuO	1282	20 W white cold LED	[19]
100 mg in 50 ml solution (DMF and H ₂ O)	(µmol/g)	Intensity: 85 W/m ² , 24 h illumination	
CQD/Cu ₂ O	55.7	300 W Xenon	[20]
$35 \text{ mg in } 20 \text{ ml } H_2O$	(µmol/g.h)	Intensity: not mentioned	
$\overline{GO-(TBA)_2}Mo_6Br^i_8Br^a_x$	1644	20 W white cold LED	[21]
100mg in 50 ml solution	(µmol/g)	Intensity: 75 W/m ²	
$(10 \text{ ml H}_2\text{O and }40 \text{ ml})$			

g-C ₃ N ₄ /ZnO	0.6	300 W Xenon	[22]
100 mg in H ₂ O vapor, 0.12 g NaHCO ₃ , 0.25 ml HCl 4M	(µmol/g.h)	10 cm apart (vertically positioned above the reactor chamber)	
Cu/TiO ₂ NFF	1.8	500W Xenon lamp	
photocatalyst film in 100	$(\mu mol/cm^2 h)$	with a 420 nm cut-off filter	[23]
ml H ₂ O		Intensity: not mentioned	
Bi ₂ S ₃ /CeO ₂	1346.8	300 W Xenon	
10 mg in 100 ml H ₂ O	(µmol/g)	Intensity: 1.3 W	[24]
		8 h illumination	
Si/TiO ₂	197 µM	300 W Xenon	
$4.2 \text{ cm}^2 \text{ in } 0.4 \text{ ml DW}$		150 min illumination	[25]
		Intensity: not mentioned	
Gr/TiO2	0.680	500 W Xenon	
0.05 g in 50ml NaHCO ₃ (0.08 M)	(µmol /g.h)	Intensity: not mentioned	[26]
3% NiO _x -Ta ₂ O ₅		400 W Halogen lamp	
0.2 g in 10 ml H ₂ O	50 (µmol)	Intensity: not mentioned	[27]
Lamellar BiVO ₄		300 W Xenon	
0.2 g in 100 ml H ₂ O	30 (µmol)	Intensity: not mentioned	[28]
RuO ₂ -modified		1000 W Xenon	
Cu _x Ag _y In _z Zn _k S _m	118.5	Intensity: not mentioned	[29]
$0.05 \text{ g in } 50 \text{ ml H}_2\text{O}$	(µmol/g.h)		
Ni/NiO-loaded N-		Xenon lamp	
InTaO ₄	350 (µmol/g)	Intensity: 100 mW	[30]
0.1 g in 50 ml H ₂ O			
NiO/InTaO ₄	1.3	500 W Halogen lamp	
0.14 g in 50ml H ₂ O	$(\mu mol.l^{-1}.h^{-1}.g^{-1})$	Intensity: not mentioned	[31]

References:

[1] Shao, X., Yin, X. and Wang, J., 2018. Nanoheterostructures of potassium tantalate and nickel oxide for photocatalytic reduction of carbon dioxide to methanol in isopropanol. *Journal of colloid and interface science*, *512*, pp.466-473.

[2] Dai, W., Hu, X., Wang, T., Xiong, W., Luo, X. and Zou, J., 2018. Hierarchical CeO₂/Bi₂MoO₆ heterostructured nanocomposites for photoreduction of CO₂ into hydrocarbons under visible light irradiation. *Applied Surface Science*, 434, pp.481-491.

[3] Kumar, A., Prajapati, P.K., Pal, U. and Jain, S.L., 2018. Ternary rGO/InVO₄/Fe₂O₃ Z-scheme heterostructured photocatalyst for CO₂ reduction under visible light irradiation. *ACS Sustainable Chemistry & Engineering*, *6*, pp.8201-8211.

[4] Gao, S., Gu, B., Jiao, X., Sun, Y., Zu, X., Yang, F., Zhu, W., Wang, C., Feng, Z., Ye, B. and Xie, Y., 2017. Highly efficient and exceptionally durable CO₂ photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. *Journal of the American Chemical Society*, *139*, pp.3438-3445.

[5] Truong, Q.D., Hoa, H.T., Vo, D.V.N. and Le, T.S., 2017. Controlling the shape of anatase nanocrystals for enhanced photocatalytic reduction of CO₂ to methanol. *New Journal of Chemistry*, *41*, pp.5660-5668.

[6] Yang, Z., Xu, J., Wu, C., Jing, H., Li, P., Yin, H., 2014. New insight into photoelectric converting CO₂ to CH₃OH on the one-dimensional ribbon CoPc enhanced Fe₂O₃ NTs. *Applied Catalysis B: Environmental* 156-157, pp. 249-256.

[7] Wang, J., Liu, H., Xu, Y., Zhang, X., 2014. Preparation of Fe₂O₃-TiO₂ and its photocatalytic reduction of CO₂ to methanol. *Asian Journal of Chemistry* 26, pp. 3875-3878.

[8] Yang, Z., Wang, H., Song, W., Wei, W., Mu, Q., Kong, B., Li, P. and Yin, H., 2017. One dimensional SnO₂ NRs/Fe₂O₃ NTs with dual synergistic effects for photoelectrocatalytic reduction CO₂ into methanol. *Journal of Colloid and Interface Science*, 486, pp.232-240.

[9] Tu, W., Li, Y., Kuai, L., Zhou, Y., Xu, Q., Li, H., Wang, X., Xiao, M. and Zou, Z., 2017. Construction of unique two-dimensional MoS_2 -TiO₂ hybrid nanojunctions: MoS_2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO₂ to methanol. *Nanoscale*, *9*(26), pp.9065-9070.

[10] Singhal, N., Goyal, R. and Kumar, U., 2017. Visible-light-assisted photocatalytic CO₂ reduction over InTaO₄: selective methanol formation. *Energy & Fuels*, *31*(11), pp.12434-12438.

[11] Gondal, M.A., Dastageer, M.A., Oloore, L.E. and Baig, U., 2017. Laser induced selective photo-catalytic reduction of CO₂ into methanol using In₂O₃-WO₃ nano-composite. *Journal of Photochemistry and Photobiology A: Chemistry*, 343, pp.40-50.

[12] Dong, W.H., Wu, D.D., Luo, J.M., Xing, Q.J., Liu, H., Zou, J.P., Luo, X.B., Min, X.B., Liu, H.L., Luo, S.L. and Au, C.T., 2017. Coupling of photodegradation of RhB with photoreduction of CO₂ over rGO/SrTi_{0.95}Fe_{0.05}O_{3-δ} catalyst: A strategy for one-pot conversion of organic pollutants to methanol and ethanol. *Journal of Catalysis*, *349*, pp.218-225.

[13] Adekoya, D.O., Tahir, M. and Amin, N.A.S., 2017. g- $C_3N_4/(Cu/TiO_2)$ nanocomposite for enhanced photoreduction of CO₂ to CH₃OH and HCOOH under UV/visible light. *Journal of CO₂ Utilization*, *18*, pp.261-274.

[14] Liu, H., Zhang, Z., Meng, J. and Zhang, J., 2017. Novel visible-light-driven CdIn2S4/mesoporous g-C₃N₄ hybrids for efficient photocatalytic reduction of CO₂ to methanol. *Molecular Catalysis*, 430, pp.9-19.

[15] Jiang, Z., Liang, X., Zheng, H., Liu, Y., Wang, Z., Wang, P., Zhang, X., Qin, X., Dai, Y., Whangbo, M.H. and Huang, B., 2017. Photocatalytic reduction of CO₂ to methanol by threedimensional hollow structures of Bi₂WO₆ quantum dots. *Applied Catalysis B: Environmental*, *219*, pp.209-215.

[16] Jin, J. and He, T., 2017. Facile synthesis of Bi₂S₃ nanoribbons for photocatalytic reduction of CO₂ into CH₃OH. *Applied Surface Science*, *394*, pp.364-370.

[17] Dai, W., Yu, J., Xu, H., Hu, X., Luo, X., Yang, L. and Tu, X., 2016. Synthesis of hierarchical flower-like Bi₂MoO₆ microspheres as efficient photocatalyst for photoreduction of CO₂ into solar fuels under visible light. *CrystEngComm*, *18*(19), pp.3472-3480.

[18] Wang, L., Wang, Y., Cheng, Y., Liu, Z., Guo, Q., Ha, M.N. and Zhao, Z., 2016. Hydrogentreated mesoporous WO₃ as a reducing agent of CO₂ to fuels (CH₄ and CH₃OH) with enhanced photothermal catalytic performance. *Journal of Materials Chemistry A*, *4*, pp.5314-5322.

[19] Gusain, R., Kumar, P., Sharma, O.P., Jain, S.L. and Khatri, O.P., 2016. Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO₂ into methanol under visible light irradiation. *Applied Catalysis B: Environmental*, *181*, pp.352-362.

[20] Li, H., Zhang, X. and MacFarlane, D.R., 2015. Carbon quantum dots/Cu₂O heterostructures for solar-light-driven conversion of CO₂ to methanol. *Advanced Energy Materials*, 5(5), p.1401077.

[21] Kumar, P., Mungse, H.P., Cordier, S., Boukherroub, R., Khatri, O.P. and Jain, S.L., 2015. Hexamolybdenum clusters supported on graphene oxide: Visible-light induced photocatalytic reduction of carbon dioxide into methanol. *Carbon*, *94*, pp.91-100.

[22] Yu, W., Xu, D. and Peng, T., 2015. Enhanced photocatalytic activity of g-C₃N₄ for selective CO₂ reduction to CH₃OH via facile coupling of ZnO: a direct Z-scheme mechanism. *Journal of Materials Chemistry A*, *3*, pp.19936-19947.

[23] Liu, E., Qi, L., Bian, J., Chen, Y., Hu, X., Fan, J., Liu, H., Zhu, C. and Wang, Q., 2015. A facile strategy to fabricate plasmonic Cu modified TiO₂ nano-flower films for photocatalytic reduction of CO₂ to methanol. *Materials Research Bulletin*, 68, pp.203-209.

[24] Ijaz, S., Ehsan, M.F., Ashiq, M.N. and He, T., 2015. Synthesis of a Bi₂S₃/CeO₂ nanocatalyst and its visible light-driven conversion of CO₂ into CH₃OH and CH₄. *Catalysis Science & Technology*, *5*(12), pp.5208-5215.

[25] Liu, Y., Ji, G., Dastageer, M.A., Zhu, L., Wang, J., Zhang, B., Chang, X. and Gondal, M.A., 2014. Highly-active direct Z-scheme Si/TiO₂ photocatalyst for boosted CO₂ reduction into value-added methanol. *RSC Advances*, *4*, pp.56961-56969.

[26] Baeissa, E.S., 2014. Green synthesis of methanol by photocatalytic reduction of CO₂ under visible light using a graphene and tournaline co-doped titania nanocomposites. *Ceramics International*, 40(8), pp.12431-12438.

[27] Lv, X.J., Fu, W.F., Hu, C.Y., Chen, Y. and Zhou, W.B., 2013. Photocatalytic reduction of CO₂ with H₂O over a graphene-modified NiO_x–Ta₂O₅ composite photocatalyst: coupling yields of methanol and hydrogen. *RSC Advances*, *3*, pp.1753-1757.

[28] Mao, J., Peng, T., Zhang, X., Li, K. and Zan, L., 2012. Selective methanol production from photocatalytic reduction of CO₂ on BiVO₄ under visible light irradiation. *Catalysis Communications*, 28, pp.38-41.

[29] Liu, J.Y., Garg, B. and Ling, Y.C., 2011. $Cu_xAg_yIn_zZn_kS_m$ solid solutions customized with RuO₂ or Rh_{1.32}Cr_{0.66}O₃ co-catalyst display visible light-driven catalytic activity for CO₂ reduction to CH₃OH. *Green Chemistry*, *13*(8), pp.2029-2031.

[30] Tsai, C.W., Chen, H.M., Liu, R.S., Asakura, K. and Chan, T.S., 2011. Ni@NiO core–shell structure-modified nitrogen-doped InTaO₄ for solar-driven highly efficient CO₂ reduction to methanol. *The Journal of Physical Chemistry C*, *115*, pp.10180-10186.

[31] Pan, P.W. and Chen, Y.W., 2007. Photocatalytic reduction of carbon dioxide on NiO/InTaO₄ under visible light irradiation. *Catalysis Communications*, 8, pp.1546-1549.