Design a super broadband near infrared material Mg₃Y₂Ge₃O₁₂:Cr³⁺ using cation inversion

for future light sources

Xiangyu Meng¹, Xiaoshuai Zhang¹, Xueli Shi¹, Keliang Qiu¹, Zhijun Wang^{1*}, Dawei Wang², Jinxin

Zhao², Xue Li¹, Zhiping Yang¹, Panlai Li^{1*}

¹National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key

Laboratory of Optic-electronic Information and Materials, College of Physics Science &

Technology, Hebei University, Baoding 071002, China

²*Hebei Key Laboratory of Semiconductor Lighting and Display Critical Materials, Baoding*

071000, China

Table S1 Refinement results of Mg ₃ Y ₂ Ge ₃ O ₁₂								
	Mg ₃ Y ₂ Ge ₃ O ₁₂ (ICSD	Mg ₃ Y ₂ Ge ₃ O ₁₂						
#280049)								
Space	Ia-3d	Ia-3d						
group								
Symmetry	cubic	cubic						
a (Å)	12.2489	12.2158						
b (Å)	12.2489	12.2158						
c (Å)	12.2489	12.2158						
V (Å3)	1837.77	1822.921						
α (deg)	90	90						
β (deg)	90	90						
γ (deg)	90	90						
Rp		8.59%						
Rwp		11.58%						
χ2		1.428						

^{*}wangzj1998@126.com

^{*}li panlai@126.com

MYG:xCr ³⁺		X	у	Z
<i>x</i> =0.01	Mg1/Y	0	0.25	0.125
	Mg2	0	0	0
	Ge	0	0.25	0.375
	0	-0.0314	0.0559	0.1560
<i>x</i> =0.03	Mg1/Y	0	0.25	0.125
	Mg2	0	0	0
	Ge	0	0.25	0.375
	0	-0.0311	0.0559	0.1572
<i>x</i> =0.05	Mg1/Y	0	0.25	0.125
	Mg2	0	0	0
	Ge	0	0.25	0.375
	0	-0.0310	0.0560	0.1570
<i>x</i> =0.07	Mg1/Y	0	0.25	0.125
	Mg2	0	0	0
	Ge	0	0.25	0.375
	0	-0.0316	0.0552	0.1572

Table S2 The atomic positions of $Mg_3Y_2Ge_3O_{12}$: xCr^{3+} (x=0.01, 0.03, 0.05, 0.07) composition obtained from the Rietveld refinement results

Table S3Theatomic positions of $Mg_3Y_2Ge_3O_{12}$: xCr^{3+} (x=0.10, 0.20, 0.30, 0.40) composition obtained from the Rietveld refinement results

MYG: <i>x</i> Cr ³⁺		Х	у	Z
<i>x</i> =0.10	Mg1/Y	0	0.25	0.125
	Mg2	0	0	0
	Ge	0	0.25	0.375
	0	-0.0318	0.0555	0.1572
<i>x</i> =0.20	Mg1/Y	0	0.25	0.125
	Mg2	0	0	0
	Ge	0	0.25	0.375
	0	-0.0319	0.0559	0.1569
<i>x</i> =0.30	Mg1/Y	0	0.25	0.125
	Mg2	0	0	0
	Ge	0	0.25	0.375
	0	-0.0302	0.0557	0.1559
<i>x</i> =0.40	Mg1/Y	0	0.25	0.125
	Mg2	0	0	0
	Ge	0	0.25	0.375
	0	-0.0302	0.0554	0.1570

Figure S1 The XPS spectrum of MYG:0.03Cr³⁺.

Figure S2 The emission spectrum of MYG:0.03Cr³⁺ at 10K.

Figure S3 The excitation spectra of MYG:0.03Cr³⁺ monitoring the peaks at 748nm, 806nm and 899nm, respectively.

Figure S4 TL spectra of MYG:xCr³⁺(x=0.01, 0.03, 0.05, 0.07).

Figure S5 The emission spectrum of MYG:0.30Cr³⁺ at 10K.