Electronic Supplementary Information

Coordination environment evolution of Co (II) during dehydration and

re-crystallization processes of KCoPO₄·H₂O towards enhanced

electrocatalytic oxygen evolution reaction

Quande Che,*^a Xiaobin Xie,^b Qian Ma,^a Junpeng Wang,^a Yuanna Zhu,^a Ruixia Shi,^a

Ping Yang*a

^a School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.

E-mail: mse_cheqd@ujn.edu.cn, mse_yangp@ujn.edu.cn

Tel.: +86 531 89736225; fax: +86 531 87974453

^b School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.

1. Experimental

1.1 Materials

All reagents were used without further purification. Cobalt chloride (CoCl₂·6H₂O, 98%), dipotassium hydrogenphosphate (K₂HPO₄, \geq 98.0%), potassium hydroxide (KOH, \geq 85.0 wt%) were purchased from Sinopharm Chemical Reagent Co. Ltd. Nafion solution (10 wt%) was purchased from Sigma-Aldrich Co. LLC. The DI water (resistance of 18.2 M Ω cm/ 25 °C) used in experiments was obtained from the Milli-Q system.

1.2 Characterization

Morphology and crystal structure studies were performed on the asprepared $KCoPO_4$ ·H₂O and $KCoPO_4$ samples using a field-emission scanning electron microscope (SEM, FEI, Quanta 250, the United States), X-ray diffraction (XRD, D8 Advance Bruker), transimission electron microscope (TEM, Tecnai G2 F20, FEI), X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALab 250Xi), and TGA thermogravimetric simultaneous thermal analyzer (STA8000).

1.3 Electrochemical measurements

All the electrocatalytic measurements were carried out on a PARSTAT4000+ electrochemical workstation in 1M KOH aqueous solution via a three-electrode configuration at room temperature. Catalyst powder was well dispersed in a mixture of isopropanol, water Nafion solution (10 wt%). Then, the ink was spread onto the surface of the glassy carbon electrode (mass loading: ~0.2 mg cm⁻²) by a micropipette and dried under room temperature. The as-prepared KCoPO₄·H₂O and KCoPO₄ were used as the working electrode. The Hg/HgO electrode and a platinum plate were used as the reference electrode and the counter electrode, respectively. The linear sweep voltammetry (LSV) measurements were carried out on a scan rate of 5 mV s⁻¹, with the iR compensation using the equation: $E_{iR \ corrected} = E - iR_s$, where R_s is the uncompensated ohmic solution resistance. Electrochemical impedance spectroscopy (EIS) tests were conducted with the frequency scan range from 10 kHz to 0.1Hz. Besides, all potentials in this research were reported versus the reversible hydrogen electrode (RHE), converted using the following equation:

 $E_{RHE} = E_{Hg/HgO} + 0.098 + 0.059 \times pH$

where $E_{Hg/HgO}$ is the tested potential against the reference electrode.

In addition, the turnover frequency (TOF) was calculated according to the following equation¹:

$$\frac{j \times A}{4 \times F \times n}$$

where *j* is the current density obtained at overpotential of 400 mV in A cm⁻², *A* is the surface area of the electrode (0.0706 cm²), *F* is the constant (96485.3 C mol⁻¹), and *n* is the moles of the catalyst loaded on the electrode.

2. Computational models and methods.

The computational calculations were performed with CASTEP module of the Materials Studio, ² which is based on the density functional theory (DFT), ^{3, 4} with the Hubbard model (DFT + U). ^{5, 6} For a better description of the Co (3d) electrons, the effective U value of 3.3 eV was applied. A kinetic energy cut-off of 520 eV was used. The electronic wave function was expressed by the combination of plane wave basis, and the generalized gradient approximation (GGA) method with the Perdew-Burke-Ernzerhof (PBE) functional^{7,8} was employed for exchange and correlation interactions. Ultrasoft pseudo potential was used to treated core electrons.⁹ The Brillouin zones was performed by the Monkhorst-pack scheme sampled into $4 \times 3 \times 5$ for KCoPO₄·H₂O and $2 \times 3 \times 2$ for KCoPO₄. The force and energy convergence criteria were set to 0.05 eV Å⁻¹ and 10⁻⁶ eV, respectively.

Fig. S1 Structural models of $KCoPO_4 \cdot H_2O$ and $KCoPO_4$. (Blue, red, pink, purple and white balls represent Co, O, P, K and H atoms, respectively.)

Fig. S2 Crystal structures of phosphate/pyrophosphate/metaphosphate-containing compounds with various cobalt (II) geometries including octahedral (Oh), tetrahedral (Td) and trigonal bipyramidal (TBP). The inset shows the local environment around the Co subunit (blue).

Fig. S3. Overall XPS spectra of the as-prepared (a) KCoPO₄·H₂O, and (b) KCoPO₄.

Fig. S4 LSV curve repeated after 50h test for KCoPO₄.

Fig. S5 Structural characterizations of KCoPO_4 after the chronopotentiometry process.

(a) XRD pattern, (b) SEM image, (c) TEM and HRTEM image.

	x	у	Z
H3	0.791910446	6.753781256	0.785989366
04	1.232976618	1.101077321	1.442646563
КО	0	4.523386189	3.390965417
Co1	0	8.253984906	2.855622607
P2	0	1.789777434	0.759719193
05	0	1.515743558	4.086261412
06	0	3.280429984	1.021655982

Table S1. Fractional atomic coordinates for $KCoPO_4$ ·H₂O.

	x	У	Z	
КО	-4.374973668	7.714302405 4.171254269		
K1	-0.565032886	5.382062866 4.225838932		
К2	-4.821926674	13.20606404	8.529327648	
Co6	-6.20944342	10.8025184	2.595405653	
Co7	-7.613667315	13.47752223	5.776165078	
Co8	-1.698224711	8.255533953 1.497976989		
Co9	-2.997098816	10.89944522 5.842207963		
P10	-3.083113463	5.454512398 1.679079065		
P11	-7.665382872	13.58519586 2.415834148		
P12	-1.668277872	8.159163762	6.864655112	
P13	-3.071069658	10.98031935	2.495403112	
014	-2.823724767	5.418956282	0.184367868	
015	-6.47674418	12.0578781	6.654946206	
O16	-1.648942303	4.03344564	6.40898796	
017	-7.134713134	13.81044269	3.842060138	
018	-0.197626519	2.014663114	6.664096183	
019	-4.79312978	10.19811979	6.375250237	
O20	-2.662272756	7.153225642	6.246338123	
021	-6.746364259	14.33562465	1.437107254	
022	-2.113577204	6.461135755 2.329512049		
023	-4.430083843	11.43619505 1.921992948		
024	-2.988198327	9.444072846	2.474782603	
025	-2.1179682	8.540745131	8.283312892	
O26	-2.923979328	11.50392173 3.931333025		
027	-1.629013647	9.437538626 6.007687479		
O28	-0.259264875	7.538145755 6.896511659		
029	-1.924402107	11.5559376 1.648022064		
КЗ	0	0	4.32261921	
К4	0	10.74411141	4.009722687	
К5	0	10.74411141	8.367098254	

Table S2. Fractional atomic coordinates for KCoPO₄.

Table S3. OER activities of some recently reported transition-metal phosphate based electrocatalysts in alkaline aqueous electrolyte in terms of the overpotential to achieve a current density of 10 mA cm⁻².

Materials	Overpotential (mV)	Electrolyte	Tafel slope (mV dec ⁻¹)	Stability (h)	Reference
KCoPO ₄	319	1.0 M KOH	61.8	50	This work
KCoPO₄·H₂O	387	1.0 M KOH	66.2	10	This work
CoHPi nanoflakes	314	1.0 M KOH	31	6.7	10
Co ₃ (PO ₄) ₂ /RGO	405	1.0 M KOH	75	3	11
Co ₃ (PO ₄) ₂ @N-C	317	1.0 M KOH	62	8	12
NaCo(PO ₃) ₃	340	1.0 M KOH	76	12	13
NiCoP/C	330	1.0 M KOH	96	10	14
CoPi-HSNPC-800	320	1.0M KOH	85	20	15

References

- [1] X. Lu, C. Zhao, Nat. Commun. 2015, 6, 6616.
- [2] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne,
- J. Phys.: Condens. Matter. 14 (2002) 2717-2744.
- [3] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864-B871.
- [4] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133-A1138.
- [5] V.I. Anisimov, F. Lichtenstein, A.I. Lichtenstein, J. Phys.: Condens. Matter. 9 (1997) 767-808.
- [6] V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44 (1991) 943-954.
- [7] X. Fu, B. Warot-Fonrose, R. Arras, D. Demaille, M. Eddrief, V. Etgens, V. Serin, Appl. Phys. Lett. 107 (2015) 062402-062406.
- [8] P.E. Blöchl, Phys. Rev. B 50(1994) 17953-17979.
- [9] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892-7895.
- [10] J. Wang, H.C. Zeng, ACS Appl. Mater. Interfaces 10 (2018) 6288-6298.
- [11] Y. Zhan, S. Yang, M. Lu, Z. Liu, J.Y. Lee, Electrochimica Acta 227 (2017) 310-316.
- [12] C.Z. Yuan, Y.F. Jiang, Z. Wang, X. Xie, Z.K. Yang, A.B. Yousaf, A.W. Xu, J. Mater. Chem.A 4 (2016) 8155-8160.
- [13] R. Gond, D.K. Singh, M. Eswaramoorthy, P. Barpanda, Angew. Chem. 131 (2019) 8418-8423.
- [14] P.L. He, X.Y. Yu, X.W.D. Lou, Angew. Chem. 129 (2017) 1-5.
- [15] L. Chen, J.T. Ren, Y.S. Wang, W.W. Tian, L.J. Gao, Z.Y. Yuan, ACS Sustainable Chem.Eng. 7 (2019) 13559–13568.