Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Improving the Optical and Thermoelectric Properties of Cs₂InAgCl₆ with Heavy Substitutional Doping: A DFT Insight

K. C. Bhamu*^{1,2}, Enamul Haque^{‡3}, C.S. Praveen^{4,5}, Nandha Kumar⁶, G. Yumnam⁷, Md. Anwar Hossain³, and Gautam Sharma⁸

¹PMC Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India ²Department of Physics, Gramin Mahila P. G. College, Sikar 332024, Rajasthan, India ³Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.

⁴International School of Photonics, Cochin University of Science and Technology, University Road, South Kalamassery, Kalamassery, Ernakulam, Kerala 682022, India

⁵Inter University Centre For Nano Materials and Devices, Cochin University of Science and Technology, University Road, South Kalamassery, Kalamassery, Ernakulam, Kerala 682022, India ⁶The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

⁷Department of Physics and Astronomy, University of Missouri, Columbia, USA 65211 ⁸Department of Physics, Indian Institute of Science Education and Research, Pune 411008

*Corresponding author Email: kcbhamu85@gmail.com ‡Email: enamul.phy15@yahoo.com

SI 1. Structural details

The double-perovskite Cs₂InAgCl₆ crystallizes in a face-centered cubic structure with 40 atoms per unit cell. The unit cell contains two octahedra: one InCl₆ and the other AgCl₆. These two octahedra alternate along the different crystallographic planes: [100], [010], and [001].

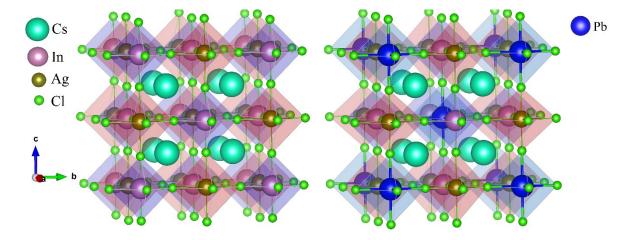


Fig. SI-1: Crystal structure of double perovskiteCs₂InAgCl₆ (left panel),and Pb-substituted-Cs₂InAgCl₆ (right panel).

The unit cell of Cs₂InAgCl₆ is shown in the left panel of Fig. SI-1. The K/Rb based structure is almost identical to the pristine Cs₂InAgCl₆ structure. The right panel shows the crystal structure of 25% Pb. We are not showing the crystal structure for other doped systems. This structure seems to be an octahedrally distorted antiperovskite type structure.

SI 2. Electronic structure

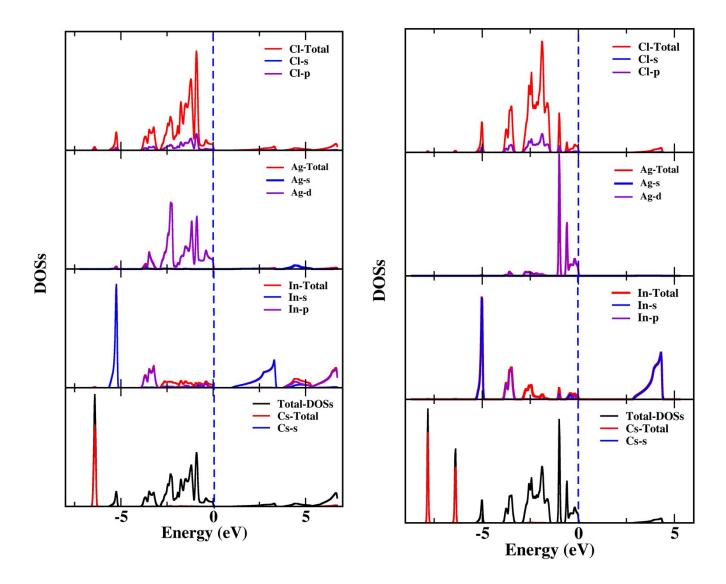


Fig. SI-2: Calculated total, atom, and orbital decomposed density of states of pristine $Cs_2InAgCl_6$ by using PBE functional (left panel) and with KTB-mBJ+SO potential (right panel).

We see from DOSs that in the pristine case the valence band maximum (VBM) is composed of Agd and Cl-p states while conduction band minimum is originated from In-s and Ag-s (minor contribution) states. Assuming a similar trend for PBE and KTB-mBJ+SO for doped materials as we observe for pristine, we report only KTB-mBJ+SOC band structure only for the doped case.

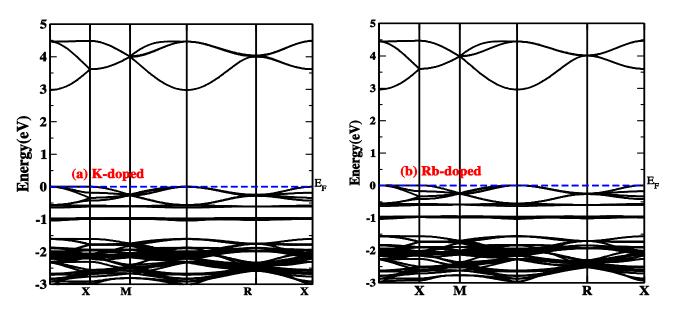


Fig. SI-3: Electronic dispersion relations of: (a) K- doped and (b) Rb-doped Cs₂InAgCl₆ by using PBE functional with KTB-mBJ potential including SO effect. The blue dash line represents the Fermi level.

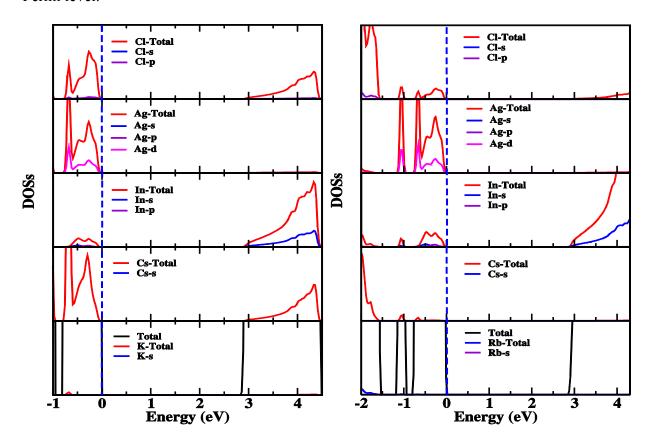


Fig. SI-4: Calculated total, atom, and orbital decomposed density of states of 25% K- (Left panel) and Rb-doped (Right panel).

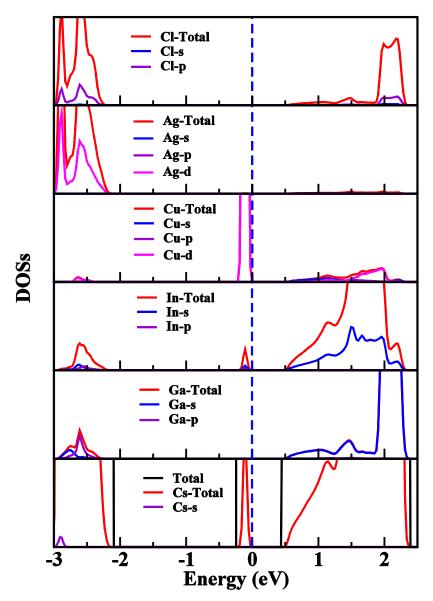


Fig. SI-5: Calculated total, atom, and orbital decomposed density of states of 12.5% Cu & 12.5% Ga-co-doped $Cs_2InAgCl_6$.

Table-SI-1: Equilibrium lattice parameters of pristine Cs₂InAgCl₆ along with its doped derivatives with experimental and other available data (symbols have their usual meaning).

Material	Space group	a (Å) (PBE)	(Δa/a)%	Exp. [17]	Cal. (Others)
Cs ₂ InAgCl ₆	225 (Fm-3m)	10.676	-	10.467	10.20 (LDA) [17], 10.23 (LDA) [36], 10.62 (HSE) [17]
Cu-Ga co- doped	221 (Pm-3m)	10.545	1.23	-	-
K-0.25	224 (Pn-3m)	10.629	0.28	-	-
Rb-0.25	224 (Pn-3m)	10.646	0.44	-	-
Sn-0.25	221 (Pm-3m)	10.854	1.67	-	-
Pb-0.25	221 (Pm-3m)	10.916	2.25	-	-
doped K-0.25 Rb-0.25 Sn-0.25 Pb-0.25	224 (Pn-3m) 224 (Pn-3m) 221 (Pm-3m)	10.629 10.646 10.854	0.28 0.44 1.67 2.25	- - - -	- - - -

Pb/Rb/K/Cs/Sn/In/Ag*/C1*: 2.5/2.5/2.5/2.5/2.5/2.37/2.4/1.85

*R_{mt} for Ag/Cl for pristine case is 2.5/2.04.

Table-SI-2: Calculated bandgap of Cs₂InAgCl₆ by using different approaches of functional along with other theoretical and experimental values. The bandgap of the studied alloys is listed for PBE

functional and KTB-mBJ potential only.

	PBE	•	TB-mI	3J	nKTB	-mBJ	KTB-	mBJ	HSE	PBE0	EXP.
Compound											
	PBE	+SOC	mBJ	+SOC	mBJ	+SOC	mBJ	+SOC			
Cs ₂ InAgCl ₆	1.03	1.004	2.57	2.46	2.68	2.56	2.91	2.85 (d)	2.6[1]	2.7[1]	3.3[1]
Cu &Ga	0.12	0.09	-	-	-	-	-	0.65 (I)	-	-	-
K-0.25	1.11	1.08	-	-	-	-	-	3.03 (d)	-	-	-
Rb-0.25	1.11	1.09	-	-	-	-	-	3.01 (d)	-	-	-
DI 0.25	2.12	1.05						2 40 (T)			
Pb-0.25	2.13	1.85	-	-	-	=	-	2.40 (I)	-	-	-
Sn-0.25	1.66	1.59	-	-	-	-	-	2.08 (I)	-	-	-

Formation energy:

To check the chemical and mechanical stability of the studied compounds, we have computed the formation energy (using Eq.-1) and elastic constants. Negative formation energies confirmation that these systems are chemically stable. The calculated the elastic constants satisfies the necessary mechanical stability condition (Eq.-8) for cubic case which predicts the mechanical stability of pristine Cs₂AgInCl₆ and its doped derivatives.

Computational Details:

To calculate the formation energy, we performed a series of calculations by using plane wave (PW) method as implemented in Quantum Espresso¹. We used 100(1000) Ry kinetic cut-off energy for wavefunction(charge density). convergence threshold on forces (a.u) for ionic minimization was 10⁻³ and convergence threshold on total energy (a.u) for ionic minimization was 10⁻⁴. Structre was visualised using XcrySDen software².

Formation Energy:

The chemical stability of the pristine and doped systems was checked using below equation:

$$E_{formation} = E_{product} - E_{reactant}$$
 (1)

The calculated values are:

$$E(Pristine) = -8.17306 \text{ Ry} \tag{2}$$

$$E(Cu \& Ga co-doping) = -8.21226 Ry$$
 (3)

$$E (K-25\% \text{ doped}) = -8.24138 \text{ Ry}$$
 (4)

$$E (Rb-25\% \text{ doped}) = -8.25616 \text{ Ry}$$
 (5)

$$E \text{ (Pb-25\% doped)} = -8.35351 \text{ Ry}$$
 (6)

$$E (Sn-25\% \text{ doped}) = -8.33529 \text{ Ry}$$
 (7)

From above equations (2-7), we can see that the energy difference between the product and the reactant is negative, which confirms the chemical stability of the studied systems. In the **Table-SI3**, we give ground state energy of the calculated systems.

Table-SI-3: Calculated formation energy of Cs₂InAgCl₆ and its doped derivatives. Unit is in Ry.

Cs ₂ AgInCl ₆	Cs ₂ Ag(Cu)In(Ga)Cl	Cs(K) ₂ AgInCl	Cs(Rb) ₂ AgInCl	Cs ₂ Ag(Pb)In(Pb)Cl	
	6	6	6	6	
-3067.83703430	-3278.685788	-3167.676406	-3039.52761796	-4376.87914	
Cs ₂ Ag(Sn)In(Sn)Cl	Cs ₂ Ag(Sn)In(Sn)Cl -		-	-	
6					
-2962.20007834	-	-	-	-	
Cs	Ag	In	Cl	K	
-63.065709720	-287.14287239	-144.67274095	-34.494826600	-112.951240	
Rb	Sn	Pb	Cu	Ga	
-48.869451860	-163.00821624	-870.33864204	-364.89183305	-277.733337	

Optical Properties:

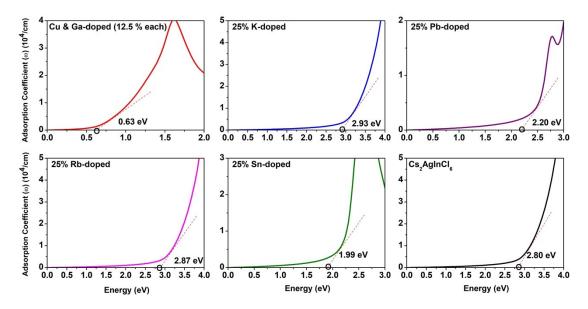


Fig. SI-6: Extraplotted band gap of pristine and its doped derivatives. From the Table-SI2 and Fig. SI-6, we see that the optical band gap is slightly underestimated.

Mixing Energy:

To understand the stability of the studied doped systems we have calculated the mixing energies as follows,

 $E_{mixing} = E_{doped \ system} + E_{replaced} - E_{printine} - E_{subsituent} \\ Where all the terms in the right side are the total energy of the respective bulk system. A positive value of <math>E_{mixing}$ means the substitutional doping is endergonic in comparison to the pristine Cs2InAgCl6 and a negative value of E_{mixing} means the substitutional doping is exergonic and more stable than pristine system. The calculated values of E_{mixing} for all the doped systems are presented in Table-SI-4.

Table-SI-4: Calculated mixing energies of the doped systems studied in this work.

System	E_{mixing} (eV)
$Cs(K)_2AgInCl_6$	0.70
$Cs(Rb)_2AgInCl_6$	0.38
$Cs_2Ag(Pb)In(Pb)C$	Cl ₆ -1.40
$Cs_2Ag(Sn)In(Sn)C$	Cl ₆ -0.79
$Cs_2Ag(Cu)In(Au)$	$Cl_6 = 0.88$

References:

- 1. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo and others, *J. Phys. Condens. Matter*, 2009, **21**, 395502.
- 2 A. Kokalj, J. Mol. Graph. Model., 1999, 17, 176–179.