Supporting Information

Zeolitic imidazolate frameworks derived ZnCo2O4 hollow tubular nanofibers for long-life supercapacitors

Shihang Zhao,^a Xianbo Yu,^a Hongmei Chen,^a Kai Tao,^a Yaoping Hu^a and Lei Han^{a,b,*}

^aSchool of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail: hanlei@nbu.edu.cn (L. Han).

^bKey Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China.

Fig S1. XRD patterns of (a) PAN@ZIF-8, PAN@ZIF-67 and PAN@ZnCo-ZIF, (b) ZnO HTNs, (c) Co₃O₄ HTNs, (d) ZnCo₂O₄ HTNs.

Fig S2. TGA curves of (a) PAN@ZnCo-ZIF, (b) PAN@ZIF-8 and (C) PAN@ZIF-67.

Fig S3. Nitrogen adsorption-desorption isotherms (a) and corresponding pore-size distribution curves (b) of $ZnCo_2O_4$ HTNs, ZnO HTNs and Co_3O_4 HTNs. (The pore size distribution of ZnO HTNs and Co_3O_4 HTNs are concentrated at 4 nm and 3.5 nm, and the specific surface area are 23.852 m² g and 38.979 m² g, respectively.)

Fig S4. EDX image of ZnCo₂O₄ HTNs.

Fig S5. SEM images of (a) PAN@Zn(Ac)₂ composite nanofibers; (b) PAN@ZIF-8 core-shell nanofibers and (c) ZnO HTNs. Scale bars in inset are 200 nm.

Fig S6. SEM images of (a) $PAN@Co(Ac)_2$ composite nanofibers; (b) PAN@ZIF-67 core-shell nanofibers and (c) Co_3O_4 HTNs. Scale bars in inset are 200 nm.

Fig S7. Electrochemical performance of $ZnCo_2O_4$ HTNs: (a) CV curves at different scan rates; (b) GCD curves at different current densities; (c) specific capacity at different current densities; (d) cycling performance at current density of 5 A g⁻¹.

Fig S8. Electrochemical performance of ZnO HTNs: (a) CV curves at different scan rates; (b) GCD curves at different current densities; (c) specific capacity at different current densities; (d) cycling performance at current density of 5 A g⁻¹.

Fig S9. Electrochemical performance of Co_3O_4 HTNs: (a) CV curves at different scan rates; (b) GCD curves at different current densities; (c) specific capacity at different current densities; (d) cycling performance at current density of 5 A g⁻¹.

Fig S10. The plots of log(i) against log(v) of ZnCo₂O₄ HTNs.

Fig S11. Electrochemical performance of AC: (a) CV curves at different scan rates; (b) GCD curves at different current densities; (c) specific capacitance at different current densities; (d) EIS spectra in Nyquist plots.

Fig S12. (a) CV curves with different voltage windows at the same scan rate of 50 mV s⁻¹; (b) GCD curves with different voltage windows at the same current density of 1 A g⁻¹; (c) CV curves of $ZnCo_2O_4$ HTNs and AC electrodes at the scan rate of 50 mV s⁻¹; (d) Ragone Plot of the $ZnCo_2O_4$ HTNs//AC ASC, in comparison with report data.

previously reported in supercapacitors.				
Electrode	C (C g ⁻¹)	Current density	Cycle performance	Ref.
			(cycle numbers)	
ZnCo ₂ O ₄ nanoparticles	182.8	1 A g ⁻¹	97.9% (1500)	S 1
ZnCo ₂ O ₄ microspheres	217	1 A g ⁻¹	95.5% (2000)	S2
ZnCo ₂ O ₄ nanoflakes	146.664	2 mA cm ⁻¹	95.1% (2000)	S 3

155.6% (3000)

145% (2000)

97.42% (10000)

S4

S5

S6

This work

1 A g⁻¹

1 A g⁻¹

5 A g⁻¹

0.5 A g⁻¹

Tabel S1. Electrochemical performance comparison of $ZnCo_2O_4$ HTNs with related materials previously reported in supercapacitors.

References

Peony-like ZnCo₂O₄

ZnCo₂O₄ nanowires

ZnCo₂O₄HTNs

ZnCo₂O₄ microspheres

242

284

132

181

- S1 S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, D. Zhang, Q. Fang and S. Qiu, *Inorg. Chem. Front.*, 2015, 2, 177-183.
- S2 Y. Gai, Y. Shang, L. Gong, L. Su, L. Hao, F. Dong and J. Li, RSC Adv., 2017, 7, 1038-1044.
- S3 G. J. H. Lim, X. Liu, C. Guan and J. Wang, *Electrochim. Acta*, 2018, 291, 177-187.
- S4 Y. Shang, T. Xie, Y. Gai, L. Su, L. Gong, H. Lv and F. Dong, *Electrochim. Acta*, 2017, 253, 281-290.
- S5 Y. Shang, T. Xie, C. Ma, L. Su, Y. Gai, J. Liu and L. Gong, *Electrochim. Acta*, 2018, 286, 103-113.
- S6 Y. zhou, L. Chen, Y. Jiao, Z. Li and Y. Gao, *Electrochim. Acta*, 2019, 299, 388-394.