SUPPORTING INFORMATION

A "skeleton/skin" strategy for designing CoNiP nanosheets arrayed on graphene

foam for on/off switching of NaBH₄ hydrolysis

Jinghua Li^{a,b}, Xianyong Hong^{a,b}, Yilong Wang^{a,b}, Yumei Luo^{a,b}, Bin Li^{a,b}, Pengru Huang^{a,b}, Yongjin Zou^{a,b}, Hailiang Chu^{a,b}, Shiyou Zheng^c, Lixian Sun^{*a,b}, Fen Xu^{*a,b}, Yong Du^d, Jianchuan Wang^d, Federico Rosei^e, Seifert Hans Jürgen^f, Ulrich Sven^f, Xiang Wu^g

- a. School of Material Science & Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China.
- b. Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004, PR China.
- c. School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
- d. State Key Laboratory of Powder Metallurgy, Central South University, Changsha Hunan, 410083, China.
- e. Institut National de La Recherche Scientifique—Énergie, Matériaux et Télécommunications, 1650, Boulevard Lionel-Boulet, J3X 1S2, Varennes, QC, Canada,
- f. Trieste University Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, Bldg. 681, D-76344 Eggenstein-Leopoldshafen, Germany.
- g. School of Material Science & Engineering, Shenyang University of Technology, Shenyang 110870, PR China.

*Corresponding authors

Prof. Dr. L. X. Sun

E-mail address: <u>sunlx@guet.edu.cn</u>

Prof. Dr. F. Xu

E-mail address: <u>xufen@guet.edu.cn</u>

Figure S1. SEM images of (a) NiF and (b) Ni/GF;

Figure S2. Raman spectra of GO and Ni/GF

Figure S3. SEM images of Ni/GF/CoNiP

Catalyst	Number of	Cycling	Ref.
	cycles	performance	
Mn/CeO ₂	5	55.0%	1
Co-P	5	67.0%	2
Co-P/CNTs-Ni foam	8	74%	3
CoCuP/Al ₂ O ₃	6	66.0%	4
Co/Fe ₃ O ₄ -CNTs	8	65.0%	5
Co(0) nanoclusters	15	31.0%	6
Ni/GF/CoNiP	15	74.9%	This work

Table S1. Catalyst systems, number of cycles, and cyclic performance for NaBH₄ hydrolysis catalyzed by catalysts previously reported in the literature.

References

- 1. S. Duman and S. Özkar, Ceria supported manganese(0) nanoparticle catalysts for hydrogen generation from the hydrolysis of sodium borohydride, *International Journal of Hydrogen Energy*, 2018, **43**, 15262-15274.
- 2. Y. Wang, Y. Shen, K. Qi, Z. Cao, K. Zhang and S. Wu, Nanostructured cobalt–phosphorous catalysts for hydrogen generation from hydrolysis of sodium borohydride solution, *Renewable Energy*, 2016, **89**, 285-294.
- 3. F. Wang, Y. Zhang, Y. Wang, Y. Luo, Y. Chen and H. Zhu, Co-P nanoparticles supported on dandelion-like CNTs-Ni foam composite carrier as a novel catalyst for hydrogen generation from NaBH 4 methanolysis, *International Journal of Hydrogen Energy*, 2018, **43**, 8805-8814.
- 4. Z. Li, L. Wang, Y. Zhang and G. Xie, Properties of Cu Co P/γ-Al 2 O 3 catalysts for efficient hydrogen generation by hydrolysis of alkaline NaBH 4 solution, *International Journal of Hydrogen Energy*, 2017, **42**, 5749-5757.
- 5. H. A. Bandal, A. R. Jadhav and H. Kim, Cobalt impregnated magnetite-multiwalled carbon nanotube nanocomposite as magnetically separable efficient catalyst for hydrogen generation by NaBH 4 hydrolysis, *Journal of Alloys and Compounds*, 2017, **699**, 1057-1067.
- 6. M. Rakap and S. Özkar, Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst, *International Journal of Hydrogen Energy*, 2010, **35**, 3341-3346.