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General information

All oxygen- and moisture-sensitive manipulations were carried out under an inert atmosphere.
All the chemicals were purchased from commercial sources and used as received unless stated
otherwise. Toluene was refluxed over Na and distilled under dry argon. Synthesized compounds
were subject to purification by temperature gradient sublimation in high vacuum before used in
subsequent studies. The 500 MHz 1H and 125MHz 3C NMR spectra were recorded on a Bruker
Ascend 500 spectrometer using DMSO-Dg as solvent and tetramethylsilane (TMS) as an internal
reference. High-resolution electrospray (ESI) mass spectra were performed on SCIEX

TripleTOF6600 nanoLCMS. UV-Vis absorption spectra were recorded on a Shimadzu UV-2700
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recording spectrophotometer. Photoluminescence (PL) spectra were recorded on a Hitachi F-
4600 fluorescence spectrophotometer. Phosphorescence spectra of thin films were conducted at
77K. Thermogravimetric analysis (TGA) was recorded on a TA Q50 instrument under nitrogen
atmosphere at a heating rate of 10°C/min from 25 to 800 °C.Thetemperature of degradation (Ty)
was correlated to a 5% weight loss. Differential Scanning Calorimetry were carried out on a TA
Q200. The glass transition temperature (T,) was determined from the second heating scan at a
heating rate of 10°C min! from 25 to 250 °C. Cyclic voltammetry (CV) was carried out in
acetonitrile (oxidation scan) at room temperature with a CHI voltammetric analyzer.
Tetrabutylammoniumhexafluorophosphate (0.1 M) was used as the supporting electrolyte. The
conventional three-electrode configuration consisted of a platinum working electrode, a platinum
wire auxiliary electrode and an Ag wire pseudo-reference electrode with ferroceniumferrocene
(Fc*/Fc) as the internal standard. Cyclic voltammograms were obtained at scan rate of 100 mV/s.
Formal potentials were calculated as the average of cyclic voltammetric anodic and cathodic
peaks. The HOMO energy levels of the compounds were calculated according to the formula: -
[4.8 + (Eip(0x/red) - E12eren))] €V. The onset potential was determined from the intersection of
two tangents drawn at the rising and background current of the cyclic voltammogram. The PL
lifetimes were measured by a single photon counting spectrometer from Edinburgh Instruments
(FLS920) with a Picosecond Pulsed UV-LASTER (LASTER377) as the excitation source. The
samples were placed in a vacuum cryostat chamber with the temperature control. The solid state
absolute PLQYs were measured on a Quantaurus - QY measurement system (C9920-02,
Hamamatsu Photonics) equipped with a calibrated integrating sphere in the host of CzSi (5 wt%)
and all the samples were excited at 315 nm. During the PLQY measurements, the integrating

sphere was purged with pure and dry argon to maintain an inert environment. The ground state
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and excited states molecular structures were optimized at the B3LYP-D3(BJ)/def2-SVP and

PBE0/def2-SVP respectively; the S1 and T1 geometries were optimized via time-dependent DFT

(TDDFT) at the PBE0/def2-SVP.
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Figure S1. '"H NMR spectrum of TTT-PXZ in DMSO-D¢ (500 MHz, 25 °C).
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Figure S2. 3C NMR spectrum of TTT-PXZ in DMSO-Dg (125 MHz, 25 °C).
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Figure S3. 'H NMR spectrum of TTT-DMAC in DMSO-Dg (500 MHz, 25 °C).
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Figure S4. 3C NMR spectrum of TTT-DMAC in DMSO-Dg (125 MHz, 25 °C).
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Figure S5. '"H NMR spectrum of 10-(4-(2H-tetrazol-5-yl)phenyl)-10H-phenoxazine (PXZ-TZ)in DMSO-Dg (500

MHz, 25 °C).
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Figure S6. 3C NMR spectrum of 10-(4-(2H-tetrazol-5-yl)phenyl)-10H-phenoxazine (PXZ-TZ) in DMSO-Dg (125

MHz, 25 °C).
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Figure S7. '"H NMR spectrum of 10-(4-(2H-tetrazol-5-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (DMAC-TZ)

in DMSO-Dg (500 MHz, 25 °C).
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Figure S8. 3°C NMR spectrum of 10-(4-(2H-tetrazol-5-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (DMAC-TZ)

in DMSO-Dg (125 MHz, 25 °C).
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Figure S9. HRMS (ESI) spectrum of TTT-PXZ.
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Figure S10. HRMS (ESI) spectrum of TTT-DMAC.
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Figure S11. (a) TGA curve under N, with heating rate of 10 °C/min, (b) and (c) Second heating curve of compound
TTT-PXZ and TTT-DMAC under N, with heating rate of 10 °C/min respectively.
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Figure S12. UV-Vis absorption spectra (a) and (c), fluorescence spectra (b)and (d) of TTT-PXZ and TTT-DMAC
in different solvents respectively. (n-hex = n-hexane, Tol = toluene, DCM = dichloromethane, EA = ethyl acetate
and THF = tetrahydrofuran, ¢ = 1.0 x 10> M). (e) Magnification of Fig S12 (d) in the region 350-450 nm of TTT-

DMAC.

Table S1 The emission peak of TTT-PXZ and TTT-DMAC in different solvents

Compound M nm (n-hex) M nm (Tol) M nm (THF) A nm (EA) M nm (DCM)
TTT-PXZ 515 522 550 548 575
TTT-DMAC 468 468 503 503 523

Table S2 The absorption and emission peak of TTT-PXZ and TTT-DMAC in toluene and spin coated film

Compound Aabs” (nm) Apr%(nm) Aabs” (nm) Apr? (nm)
TTT-PXZ 291, 322, 394 522 242,275, 331, 394 516
TTT-DMAC 290, 358 468 279, 364 478

@ Measured in toluene (10-> M) at room temperature. “Measured in spin coated films at room temperature
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Figure S13. Photoluminescence (PL) spectra of (a) TTT-PXZ (b) magnification of PL spectra of TTT-PXZ and (c)
TTT-DMAC in THF/water mixtures with different volume ratio of water (f,,).
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Figure S14. The cyclic voltammetry curves in acetonitrile of TTT-PXZ and TTT-DMAC.
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Figure S15. The current efficiency (a) and power efficiency (b) versus current density of device based on TTT-

PXZ and TTT-DMAC emitters.
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Exciton Lifetime and Rate Constant !

To calculate the rate constant of TTT-PXZ, the prompt PLQY (®,) and delayed PLQY (®y)
were determined by using the total PLQY and the integrated intensity ratio between prompt and
delayed components which was calculated from transient photoluminescence measurements. The
intensity ratio between prompt (t,) and delayed (t4) components were determined using two

fluorescent lifetimes (t,, 14) and fitting parameter (A,,, Ag) as follow.

1 (t) = Ape-l/xp + Ade-l/td (1)
1y =AyT,) (A,Ty+ AgTq) —0.0884 )
Tqg= Ade/ (Apr + Ade): 09116 (3)

Then, the prompt PLQY (®,) and delayed PLQY (®g4) were determined using intensity ratio (rp, rq) and total PLQY.

(Dtotal = (Dp + (Dd _0.395 (4)
D, =1, Dtorar -0.0884 x0.395 =0.035 %)
Oy =1,DPoral -0.9116 x 0.395=0.360 (6)

The rate constants of ISC (kijsc) and RISC (kgrisc) of TTT-PXZ emitter based on the following

equations:
k=11, =1+362%x10°=0.028 x 10°s! @)
ky=1/tg -1+4.2x10°=0.238 x 10°s"! 8
ky = @k, + Dy~ Dk, =0.035 x 0.028 x 10° ©9)
=0.098 x 107!
Krisc = kpka®/ k. =[(0.028x10°s) (0.238 x 10°s7) (0.395)] + (0.098 x 107s°!) (10)
=2.69 x 106!

Kisc = kpka®al krisc®,=[(0.028x107s) (0.238 x 10651 (0.360)] + [(2.69 x 106s) 0.035] (11)
= 2.55% 1075

Similarly, to calculate the rate constant of TTT-DMAC
7y =AyTy/ (ApTyt AdTy) = 0.0879 (12)
ra=Aqtal (AT, + AgT4)-0.9121 (13)
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Then, the prompt PLQY (®,) and delayed PLQY (®g4) were determined using intensity ratio (r, rq) and total PLQY.

(Dtotal = (Dp + q)d =0.214 (14)
DO, =1, Dioral =0.0879 x 0.214 =0.019 (15)
Dy=rDuy  =09121 x 0214 =0.195 (16)

The rate constants of ISC (k;sc) and RISC (kgrisc) of TTT-DMAC emitter based on the following

equations:
ky=1/1, =1+49.5x10°=0.020 x 10°s’! (17)
kqe=l/tg -1 +4.6%x106=0.217 x 10°s’! (18)
ky = @k, + Oakg = Dyk, =0.019 x 0.020 x 10°s™! (19)
=0.038 x 107s"!
krisc = kpkq®/ k. = [(0.020x 10°s7) (0.217 x 10°s!) (0.214)] + (0.038 x 107s™!) (20)
=244 x 1065’

Kisc = kykg®al kpisc®,=[(0.020 x 10°s1) (0.217 x 10°s1) (0.195)] + [(2.44 x 10657) 0.019]  (21)
= 1.83 x 107s"!
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