# Electronic Supporting Information for Publication <br> Studies on the preparation of aminobipyridines and bipyridine sultams via an intramolecular free radical pathway 

Javier Recio, Fabiana Filace, Elena Gala, Adrián Pérez-Redondo, Julio Alvarez-Builla* and Carolina Burgos*<br>Departamento de Química Orgánica y Química Inorgánica and Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain

## Table of contents

I. Experimental details and characterization data for compounds:
8a-c ..... S2-S4
3ba ..... S4
3d, 3e ..... S4-S5
3aa-cb ..... S5-S8
$4 a \mathbf{a}$ ..... S8-S9
5aa-bb ..... S8-S11
4ca-4cb, 4d, 4e ..... S11-S13
II. X-ray crystallographic data for 5ba ..... S14
III. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for compounds: ..... S15-S54
8a-c, 3ba, 3d,e, 4aa, 5aa-bb, 4ca-4cb, 4d, 4e

## General Information

Reagents of the highest commercial quality were purchased and used without further purification, unless stated otherwise. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60FS-254) using UV light for visualization. Column chromatography was performed using silica gel ( $60 \mathrm{~F} 254,70-200 \mathrm{~mm}$ ) as the stationary phase. All melting points were determined in open capillary tubes, on a Stuart Scientific SMP3 melting point apparatus. IR spectra were obtained on a Perkin-Elmer FTIR spectrum 2000 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with either a Varian Mercury VX-300, Varian Unity 300, or Varian Unity 500 MHz spectrometer. Chemical shifts are given in ppm ( $\delta$ ) downfield from TMS. Coupling constants (J) are in hertz (Hz), and signals are described as follows: s , singlet; d , doublet; t , triplet; q , quadruplet; m, multiplet; br, broad. Samples were analyzed by high pressure liquid chromatography (HP 1260 series) coupled to a mass spectrometer Quadrupole ( 6120 series) from Agilent Tecnhologies. The chromatographic separation was carried out with a Luna C18 column ( $100 \mathrm{~mm} \times 4,6 \mathrm{~mm} \times 3 \mu \mathrm{~m}$ ) (supplied by Phenomenex). LC conditions were: flow rate, $1 \mathrm{~mL} / \mathrm{min}$; mobile phases, water containing $0,1 \%$ formic acid (A) and methanol containing $0.1 \%$ formic acid (solvent B); elution gradient: $10-100 \%$ B in 20 minutes, $100-10 \%$ for 1 min , and $10 \%$ for 5 min in order to re-equilibrate the column at the initial conditions; injected volumen, $5 \mu \mathrm{~L}$; temperature $50{ }^{\circ} \mathrm{C}$. High-resolution analyses (HRMS) were performed on an Agilent 6210 time-of-flight LC/MS. Compounds $\mathbf{6 a}^{12}, \mathbf{6} \mathbf{b}^{11}, \mathbf{1 0 a}, \mathbf{b}^{14}$ and $\mathbf{4 c b}{ }^{17}$ have been previously described.

## Preparation of compounds 8a-8c, 3ba, 3d and 3e

## N -(2-Bromo-3-pyridyl)pyridine-3-

sulfonamide 8a


Method C: To a stirred solution of 2-bromopyridin-3-amine 7a ( $173 \mathrm{mg}, 1 \mathrm{mmol}$ ) in pyridine ( 2 mL ), pyridine-3-sulfonyl chloride $\mathbf{6 a}(354 \mathrm{mg}, 2 \mathrm{mmol}$ ) was portionwise added during 15 min , at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h . Then, at room temperature, the reaction mixture was treated with water $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (1:1 $\mathrm{EtOAc} /$ hexanes) to supply $\mathbf{8 a}$ as a white solid ( $204 \mathrm{mg}, 0.65 \mathrm{mmol}, 65 \%$ ). Mp: $164-165^{\circ} \mathrm{C}$. IR ( KBr ) $\mathrm{v}_{\max }$ $\left(\mathrm{cm}^{-1}\right) 3062,1581,1339,1169,586 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta(\mathrm{ppm}) 8.85(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.78$
(dd, $J=4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (ddd, $J=8.1,2.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=$ $8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.57 (ddd, $J=8.1,4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 154.4,148.9,148.6,140.0,138.5,138.0,136.7,134.2,125.6,125.0$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$313.9593, found: 313.9591.

## $N$-(3-Bromo-2-pyridyl)pyridine-3-sulfonamide 8b



Method C: To a stirred solution of 3-bromopyridin-2-amine $7 \mathbf{~} \mathbf{b}$ ( $173 \mathrm{mg}, 1 \mathrm{mmol}$ ) in pyridine ( 2 mL ), pyridine-3-sulfonyl chloride $\mathbf{6 a}(354 \mathrm{mg}, 2 \mathrm{mmol}$ ) was portionwise added during 15 min , at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h . Then, at room temperature, the reaction mixture was treated with water $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel ( $1: 1$ $\mathrm{EtOAc} /$ hexanes) to supply $\mathbf{8 b}$ as a white solid ( $132 \mathrm{mg}, 0.42 \mathrm{mmol}, 42 \%$ ). Mp: $162-164{ }^{\circ} \mathrm{C}$. IR ( KBr ) $v_{\max }$ $\left(\mathrm{cm}^{-1}\right) 3064,1580,1445,1167,917,698 .{ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO- $d_{6}$ ) $\delta(\mathrm{ppm}) 10.84$ (brs, 1 H ), 9.12 (brs, 1H), 8.79 (brs, 1H), 8.34 (brs, 1H), 8.11 (brs, 2H), 7.62 (brs, 1H), 6.98 (brs, 1H. HPLC-Ms (ES-API) $314.0,316.0[\mathrm{M}+\mathrm{H}]^{+}, t_{R} 7.829 \mathrm{~min}(100 \%)$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 313.9593, found: 313.9588 .

## N-2-Bromo-3-pyridyl)pyridine-2-

## sulfonamide 8c



Method C: To a stirred solution of 2-bromopyridin-3-amine 7a (173 mg, 1 mmol ) in pyridine ( 2 mL ), pyridine-2-sulfonyl chloride $\mathbf{6 b}(354 \mathrm{mg}, 2 \mathrm{mmol})$ was portionwise added during 15 min , at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h . Then, at room temperature, the reaction mixture was treated with water $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (3:7 $\mathrm{EtOAc} /$ hexanes) to supply $\mathbf{8 c}$ as a white solid ( $194 \mathrm{mg}, 0.62 \mathrm{mmol}, 62 \%$ ). $\mathrm{Mp}: 129-131{ }^{\circ} \mathrm{C}$. IR ( KBr ) $\mathrm{v}_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3060,1447,1181,593 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 8.68(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.05$ (m, 2H), $7.98-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{ddd}, J=7.5,4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{brs}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.0,4.6 \mathrm{~Hz}$,

## N -(3-Bromo-2-pyridyl)- N -methyl-pyridine-3-sulfonamide 3ba



Method C: To a stirred solution of 3-bromo- $N$-methyl-pyridin-2-amine $\mathbf{1 0 a}(187 \mathrm{mg}, 1 \mathrm{mmol})$ in pyridine ( 2 mL ), pyridine-3-sulfonyl chloride $\mathbf{6 a}(355 \mathrm{mg}, 2 \mathrm{mmol}$ ) was portionwise added during 15 min , at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h . Then, at room temperature, the reaction mixture was treated with a saturated $\mathrm{NaHCO}_{3}$ solution $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (7:3 EtOAc/ hexanes) to supply 3ba as a white solid ( $192 \mathrm{mg}, 0.58 \mathrm{mmol}, 58 \%$ ). Mp: 106-111 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3060,1575,1409,1163,752,603 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 9.09(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.84(\mathrm{dd}, J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=4.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{ddd}, J=8.0,2.2,1.7$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 8.05 (dd, $J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.50 (dd, $J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 153.1,152.4,149.4,147.8,143.1,136.7,135.1,125.1,123.7$, 121.7, 37.1. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{11}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 327.9750$, found: 327.9751 .

## $N$-(3-Bromo-2-pyridyl)- $N$-methyl-pyridine-2-sulfonamide 3d



Method C: To a stirred solution of 3-bromo- $N$-methyl-pyridin-2-amine $\mathbf{1 0 a}$ ( $187 \mathrm{mg}, 1 \mathrm{mmol}$ ) in pyridine ( 2 mL ), pyridine-2-sulfonyl chloride $\mathbf{6 b}(354 \mathrm{mg}, 2 \mathrm{mmol})$ was portionwise added during 15 min , at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h . Then, at room temperature, the reaction mixture was treated with a saturated $\mathrm{NaHCO}_{3}$ solution $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (7:3 EtOAc/ hexanes) to supply 3d as a white solid ( $203 \mathrm{mg}, 0.62 \mathrm{mmol}, 62 \%$ ). Mp: $121-123{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\max }\left(\mathrm{cm}^{-1}\right) 3035,1567,1354,1172,607,569 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.77(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=4.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.84$ (m, 2H), 7.52 (ddd,
$J=6.7,4.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 157.3, 152.5, 149.9, 147.6, 142.9, 137.8, 126.8, 124.8, 123.3, 121.1, 38.3. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{11}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$327.9749, found: 327.9746.

## $N$-(3-Bromo-5-methyl-2-pyridyl)- $N$-methyl-pyridine-2-sulfonamide 3e



Method C: To a stirred solution of 3-bromo-N,5-dimethyl-pyridin-2-amine $\mathbf{1 0 b}$ ( $201 \mathrm{mg}, 1 \mathrm{mmol}$ ) in pyridine ( 2 mL ), pyridine-2-sulfonyl chloride $\mathbf{6 b}(354 \mathrm{mg}, 2 \mathrm{mmol})$ was portionwise added during 15 min , at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h . Then, at room temperature, the reaction mixture was treated with a saturated $\mathrm{NaHCO}_{3}$ solution $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (6:4 EtOAc/ hexanes) to supply 3e as a white solid ( $318 \mathrm{mg}, 0.93 \mathrm{mmol}$, $93 \%)$. Mp: $114-116^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}) v_{\max }\left(\mathrm{cm}^{-1}\right) 3060,1576,1557,1353,1169,743,584 .{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.76(\mathrm{dd}, J=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{dd}$, $J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=6.7,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 157.5,150.1,149.9,148.1,143.1,137.7,135.3,126.7,123.3,120.7,38.3,17.7$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 341.9905$, found: 341.9894 .

## Preparation of compounds 3aa, 3ab, 3bb, 3ca and 3cb

## $N$-(2-Bromo-3-pyridyl)- N -methyl-

pyridine-3-sulfonamide 3aa


To a stirred solution of N -(2-bromo-3-pyridyl)pyridine-3-sulfonamide $\mathbf{8 a}$ ( $314 \mathrm{mg}, 1 \mathrm{mmol}$ ) in dry DMF $(3 \mathrm{~mL})$ and at $0^{\circ} \mathrm{C}, \mathrm{NaH} 60 \%(48 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added. The reaction mixture was stirred for 20 min at the same temperature and methyl iodide ( $156 \mathrm{mg}, 1.1 \mathrm{mmol}, 68 \mu \mathrm{~L}$ ) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5 h . The reaction mixture was treated with a saturated $\mathrm{NaHCO}_{3}$ solution $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined
organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel ( $6: 4$ $\mathrm{EtOAc} /$ hexanes) to supply 3aa as a white solid ( $213 \mathrm{mg}, 0.65 \mathrm{mmol}, 65 \%$ ). Mp: $82-84^{\circ} \mathrm{C}$. IR ( KBr ) $\mathrm{v}_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3063,1561,1350,1163,1040,757,568 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.02(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.85(\mathrm{dd}, J=4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{ddd}, J=8.1,2.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (dd, $J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{ddd}, J=8.0,4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 153.7,149.8,148.4,143.1,140.5,137.0,135.7,135.2,123.8,123.4$, 38.0. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{11}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 327.9749$, found: 327.9749.

## $N$-(2-Bromo-3-pyridyl)- $N$-(methoxymethyl)pyridine-3-sulfonamide 3ab



To a stirred solution of $N$-(2-bromo-3-pyridyl)pyridine-3-sulfonamide $\mathbf{8 a}$ ( $314 \mathrm{mg}, 1 \mathrm{mmol}$ ) in dry DMF $(3 \mathrm{~mL})$ and at $0^{\circ} \mathrm{C}, \mathrm{NaH} 60 \%(48 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added. The reaction mixture was stirred for 20 min at the same temperature and methoxymethyl chloride ( $89 \mathrm{mg}, 1.1 \mathrm{mmol}, 84 \mu \mathrm{~L}$ ) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5 h . The reaction mixture was treated with a saturated $\mathrm{NaHCO}_{3}$ solution $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (4:6 $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to supply $\mathbf{3 a b}$ as a yellow solid ( $295 \mathrm{mg}, 0.82 \mathrm{mmol}, 82 \%$ ). Mp: $82-84{ }^{\circ} \mathrm{C}$. IR ( KBr ) $\mathrm{v}_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3052,1573,1402,1175,1052,743 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.92(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.81(\mathrm{dd}, J=4.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=$ $7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, $J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (brs, 1H), 4.83 (brs, $1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 153.7,150.2,148.6,143.8,142.4,136.2,135.3$, 133.7, 123.6, 123.3, 81.9, 56.5. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 357.9856$, found: 357.9851 .

## $N$-(3-Bromo-2-pyridyl)- $N$-(methoxymethyl)pyridine-3-sulfonamide 3bb



3bb

To a stirred solution of $N$-(3-bromo-2-pyridyl)pyridine-3-sulfonamide $\mathbf{8 b}(314 \mathrm{mg}, 1 \mathrm{mmol})$ in dry DMF $(3 \mathrm{~mL})$ and at $0^{\circ} \mathrm{C}, \mathrm{NaH} 60 \%(48 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added. The reaction mixture was stirred for 20 min at the same temperature and methoxymethyl chloride ( $89 \mathrm{mg}, 1.1 \mathrm{mmol}, 84 \mu \mathrm{~L}$ ) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5 h . The reaction mixture was treated with a saturated $\mathrm{NaHCO}_{3}$ solution $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (7:3 EtOAc/ hexanes) to supply 3bb as a white solid ( $291 \mathrm{mg}, 0.81 \mathrm{mmol}, 81 \%$ ). $\mathrm{Mp}: 102-103{ }^{\circ} \mathrm{C}$. IR ( KBr ) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3066,1428,1354,1175,1014,621 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.10(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=4.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{ddd}, J=8.1,2.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (ddd, $J=8.1,4.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (dd, $J=7.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (s, 2H), $3.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 153.4,151.1,149.3,147.9,143.2,137.4,136.0,125.3$, 123.5, 122.5, 82.7, 57.0. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 357.9856$, found: 357.9849 .

## N -(2-Bromo-3-pyridyl)- N -methyl-pyridine-2-sulfonamide 3ca



To a stirred solution of $N$-2-bromo-3-pyridyl)pyridine-2-sulfonamide $\mathbf{8 c}(314 \mathrm{mg}, 1 \mathrm{mmol})$ in dry DMF (3 mL ) and at $0^{\circ} \mathrm{C}, \mathrm{NaH} 60 \%(48 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added. The reaction mixture was stirred for 20 min at the same temperature and methyl iodide ( $156 \mathrm{mg}, 1.1 \mathrm{mmol}, 68 \mu \mathrm{~L}$ ) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5 h . The reaction mixture was treated with a saturated $\mathrm{NaHCO}_{3}$ solution $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (4:6 EtOAc/ hexanes) to supply 3ca as a white solid ( $298 \mathrm{mg}, 0.90 \mathrm{mmol}, 90 \%$ ). Mp: $80-84{ }^{\circ} \mathrm{C}$. IR ( KBr ) $\mathrm{v}_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3037,1558,1399,1355,1111,742,571 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 8.76(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.32(\mathrm{dd}, J=4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (ddd, $J=6.2$, $4.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 157.2$, 150.3, 149.5, 144.0, 140.3, 138.3, 137.9, 127.2, 123.5, 123.0, 39.0. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{11}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$327.9749, found: 327.9746.

## $N$-(2-Bromo-3-pyridyl)- $N$-(methoxymethyl)pyridine-2-sulfonamide 3cb



To a stirred solution of N -(2-bromo-3-pyridyl)pyridine-2-sulfonamide $\mathbf{8 c}(314 \mathrm{mg}, 1 \mathrm{mmol})$ in dry DMF (3 $\mathrm{mL})$ and at $0^{\circ} \mathrm{C}, \mathrm{NaH} 60 \%(48 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added. The reaction mixture was stirred for 20 min at the same temperature and methoxymethyl chloride ( $89 \mathrm{mg}, 1.1 \mathrm{mmol}, 84 \mu \mathrm{~L}$ ) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5 h . The reaction was treated with a saturated $\mathrm{NaHCO}_{3}$ solution $(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (4:6 EtOAc/ hexanes) to supply 3cb as a white solid ( $340 \mathrm{mg}, 0.95 \mathrm{mmol}, 95 \%$ ). $\mathrm{Mp}: 134-136{ }^{\circ} \mathrm{C}$. IR ( KBr ) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3083,2937,1401,1357,1177,1012,742,599 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.71(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{dd}, J=7.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}$, $J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{brs}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 157.4,151.0,150.3$, 149.6, 142.8, 138.2, 132.4, 127.2, 123.2, 122.5, 82.8, 56.6. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 357.9856$, found: 357.9862.

## Preparation of compounds 4aa, 5aa-bb, 4ca-cb, 4d and 4e

N - Methyl-2-(3-pyridyl)pyridin-3-amine 4aa and 5-methyldipyrido[3,2-c:3',2'-f]thiazine 6,6-dioxide 5aa


4aa


5aa

A solution of TTMSS ( $223 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and AIBN ( $147 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) in dry $m$-xylene $(10 \mathrm{~mL})$ and dry acetonitrile ( 0.2 mL ) was added dropwise, by using a syringe pump during 36 h , to a stirred solution of 3aa ( $98 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) in dry $m$-xylene $\left(1 \mathrm{~mL}\right.$ ) at $80^{\circ} \mathrm{C}$ (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of 3aa (TLC analysis). The resulting solution was concentrated, treated with a saturated $\mathrm{NaHCO}_{3}$ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Separation and purification by TLC (silica gel, hexane/EtOAc (1:9)) provided 4aa as white semisolid ( $9 \mathrm{mg}, 0.049 \mathrm{mmol}$, $16 \%, \mathrm{R}_{f}=0.15$ ) and 5aa ( $28 \mathrm{mg}, 0.133 \mathrm{mmol}, 38 \%, \mathrm{R}_{f}=0.40$ ). 4aa: $\mathrm{IR}(\mathrm{KBr}) \mathrm{v}_{\max }\left(\mathrm{cm}^{-1}\right) 3423,2925$,
$1581,1498,1161,714 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 8.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dd}, J=4.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{ddd}, J=7.8,2.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{ddd}, J=7.8,4.9,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{brs}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.7,149.4,143.10,142.3,138.3,136.6,134.5,123.9,123.8,117.1,30.6$. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$186.1026, found: 186.1025. 5aa: Mp: $158-162{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \mathrm{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3288,1584,1322,1163,728,619 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 9.23(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dd}, J=4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=5.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J$ $=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 153.3$, $145.5,143.5,139.6,138.9,137.9,130.3,126.3,126.0,119.5,31.6$. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$248.0488, found: 248.0490 .

## 5-(Methoxymethyl)dipyrido[3,2-c:3',2'-f]thiazine 6,6-dioxide 5ab



A solution of TTMSS ( $223 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and AIBN ( $147 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) in dry $m$-xylene $(10 \mathrm{~mL})$ and dry acetonitrile ( 0.2 mL ) was added dropwise, by using a syringe pump during 36 h , to a stirred solution of 3ab ( $107 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) in dry $m$-xylene $(1 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of $\mathbf{3 a b}$ (TLC analysis). The resulting solution was concentrated, treated with a saturated $\mathrm{NaHCO}_{3}$ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (5:95)) provided 5ab as white solid ( $36.0 \mathrm{mg}, 0.194 \mathrm{mmol}, 64 \%$ ). Mp: $158-162{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\max }\left(\mathrm{cm}^{-1}\right) 3055,2944,1655,1584,1345,1183,1080,754 .{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.20(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=4.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{dd}$, $J=5.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 153.4,146.8,143.2,139.7,139.6,136.9,131.4,128.5,126.5$, 119.8, 80.3, 56.7. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 278.0594$, found: 278.0591.

## 6-Methyldipyrido[2,3-b:2',3'-d]thiazine 5,5-dioxide 5ba



5ba

A solution of TTMSS ( $223 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and AIBN ( $147 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) in dry $m$-xylene ( 10 mL ) and dry acetonitrile ( 0.2 mL ) was added dropwise, by using a syringe pump during 36 h , to a stirred solution of 3ba ( $98 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) in dry $m$-xylene $(1 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of 3ba (TLC analysis). The resulting solution was concentrated, treated with a saturated $\mathrm{NaHCO}_{3}$ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (1:1)) provided 5ba as white solid ( $41 \mathrm{mg}, 0.166 \mathrm{mmol}, 55 \%$ ). Mp: 158-160 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3071,1582,1429,1322,1165,887 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 8.95$ (dd, $J=4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.92(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{dd}, J=4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=8.0$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 153.2,150.8,150.0,147.1,135.3,130.5,129.8,123.1,119.4,118.4,28.6$. HRMS (ESITOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$248.0488, found: 308.0491.

## 6-(Methoxymethyl)dipyrido[2,3-b:2',3'-d]thiazine 5,5-dioxide 5bb



5bb

A solution of TTMSS ( $223 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\operatorname{AIBN}(147 \mathrm{mg}, 0.9 \mathrm{mmol})$ in dry $m$-xylene $(10 \mathrm{~mL})$ and dry acetonitrile ( 0.2 mL ) was added dropwise, by using a syringe pump during 36 h , to a stirred solution of 3bb $(107 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dry $m$-xylene $(1 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of $\mathbf{3 b b}$ (TLC analysis). The resulting solution was concentrated, treated with a saturated $\mathrm{NaHCO}_{3}$ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (3:7)) provided 5bb as white solid ( $44 \mathrm{mg}, 0.158 \mathrm{mmol}, 53 \%$ ). Mp: 129-132 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 2960,1583,1425,1328,1261,1060,841 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$
$9.06-8.87(\mathrm{~m}, 2 \mathrm{H}), 8.64(\mathrm{dd}, J=4.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.0,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 153.4$, 151.3, 149.5, 147.5, 135.9, 130.9, 130.5, 123.3, 120.7, 119.4, 75.7, 57.4. HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$278.0594, found: 278.0596.

## $N$-Methyl-2-(2-pyridyl)pyridin-3-amine 4ca



4ca

A solution of TTMSS ( $223 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and AIBN ( $147 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) in dry $m$-xylene $(10 \mathrm{~mL})$ and dry acetonitrile $(0.2 \mathrm{~mL})$ was added dropwise, by using a syringe pump during 36 h , to a stirred solution of 3ca ( $98 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) in dry $m$-xylene $\left(1 \mathrm{~mL}\right.$ ) at $80^{\circ} \mathrm{C}$ (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of 3ca (TLC analysis). The resulting solution was concentrated, treated with a saturated $\mathrm{NaHCO}_{3}$ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (7:3)) provided $\mathbf{4 c a}$ as white solid ( $41 \mathrm{mg}, 0.221 \mathrm{mmol}, 74 \%$ ). Mp: 66-68 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3062,2982,1582,1339,1170,1113,700,587 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm) $9.19(\mathrm{brs}, 1 \mathrm{H}), 8.61-8.50(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{dd}, J=4.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{ddd}, J=8.2,7.4,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 159.7,146.5,146.2,136.6,136.5,135.7,124.9,122.5,121.8,117.7,29.4$. HRMS (ESITOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$186.1026, found: 186.1026.

## 2-(2-Pyridyl)pyridin-3-amine 4cb ${ }^{17}$



4cb

A solution of TTMSS ( $223 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and AIBN ( $147 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) in dry $m$-xylene $(10 \mathrm{~mL})$ and dry acetonitrile ( 0.2 mL ) was added dropwise, by using a syringe pump during 36 h , to a stirred solution of $\mathbf{3 c b}(107 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dry $m$-xylene $(1 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ (bath temperature), under an atmosphere of dry

[^0]argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of $\mathbf{3 c b}$ (TLC analysis). The resulting solution was concentrated, treated with a saturated $\mathrm{NaHCO}_{3}$ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (7:3)) provided 4cb as white solid ( $33 \mathrm{mg}, 0.193 \mathrm{mmol}, 64 \%$ ). Mp: 102-106 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right) 3389,3264,3044,1601,1446,1147,751,631 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm) 8.57 (ddd, $J=4.9,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{dt}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.81 (ddd, $J=8.2,7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, J=7.4,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (brs, 2H). ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 159.5,147.0,144.0,138.2$, 137.2, 136.7, 124.6, 124.5, 122.4, 122.0. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$172.0870, found: 172.0873.

## $N$-Methyl-3-(2-pyridyl)pyridin-2-amine 4d



4d

A solution of TTMSS ( $223 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\operatorname{AIBN}(147 \mathrm{mg}, 0.9 \mathrm{mmol})$ in dry $m$-xylene $(10 \mathrm{~mL})$ and dry acetonitrile ( 0.2 mL ) was added dropwise, by using a syringe pump during 36 h , to a stirred solution of 3d $(98 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dry $m$-xylene $(1 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of $\mathbf{3 d}$ (TLC analysis). The resulting solution was concentrated, treated with a saturated $\mathrm{NaHCO}_{3}$ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (7:3)) provided 4d as yellow oil ( $47 \mathrm{mg}, 0.254 \mathrm{mmol}, 85 \%$ ). IR ( NaCl ) $v_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3418,1595,1519,1386,1241,1100,769,569 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 8.93$ (brs, 1 H ), $8.58(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=4.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=7.1,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=6.5,4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=7.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ $(\mathrm{d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 157.6,149.1$ (2C), 147.6, 137.0, 135.9, 121.7, 121.3, 116.1, 111.2, 28.2. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$186.1026, found: 186.1030.

## N,5-Dimethyl-3-(2-pyridyl)pyridin-2-amine $4 e$



A solution of TTMSS ( $223 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\operatorname{AIBN}(147 \mathrm{mg}, 0.9 \mathrm{mmol})$ in dry $m$-xylene $(10 \mathrm{~mL})$ and dry acetonitrile ( 0.2 mL ) was added dropwise, by using a syringe pump during 36 h , to a stirred solution of $\mathbf{3 e}(103 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dry $m$-xylene $(1 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of $\mathbf{3 e}$ (TLC analysis). The resulting solution was concentrated, treated with a saturated $\mathrm{NaHCO}_{3}$ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (7:3)) provided $\mathbf{4 e}$ as yellow oil ( $53 \mathrm{mg}, 0.266 \mathrm{mmol}, 89 \%$ ). IR ( KBr ) $v_{\max }$ $\left(\mathrm{cm}^{-1}\right) 3423,1666,1618,1221,1019,795,568 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}) 8.60(\mathrm{brs}, 1 \mathrm{H}), 8.58$ (dd, $J=4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, ~ J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (ddd, $J=7.1,4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 157.6$, 155.9, 148.6, 147.6, 137.0, 136.9, 121.7, 121.2, 119.7, 115.9, 28.5, 17.7. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$200.1182, found: 200.1179 .

## X-ray crystallographic data for 5ba

Colourless crystals of $\mathbf{5 b a}$ were obtained from a recrystallization process in toluene. The crystals were covered with a layer of a viscous perfluoropolyether (FomblinY). A suitable crystal was selected with the aid of a microscope, mounted on a cryoloop, and placed in the low temperature nitrogen stream of the diffractometer. The intensity data sets were collected at 200 K on a Bruker-Nonius KappaCCD diffractometer equipped with an Oxford Cryostream 700 unit. Crystallographic data are presented in Table S1. The structure was solved, using the WINGX package, ${ }^{18}$ by intrinsic phasing methods (SHELXT), ${ }^{19}$ and refined by least-squares against $\mathrm{F}^{2}$ (SHELXL-2014/7). ${ }^{20}$ All non-hydrogen atoms were anisotropically refined, whereas hydrogen atoms were included, positioned geometrically and refined by using a riding model.

Table S1. Experimental data for the X-ray diffraction study on 5ba.

```
\begin{tabular}{|c|c|}
\hline & 5ba \\
\hline \(\mathrm{CCDC}^{\text {a }}\) code & 1967009 \\
\hline Formula & \(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\) \\
\hline \(M_{\text {r }}\) & 247.27 \\
\hline \(T[\mathrm{~K}]\) & 200(2) \\
\hline \(\lambda[\AA]\) & 0.71073 \\
\hline crystal system & Triclinic \\
\hline space group & \(P-1\) \\
\hline \(a[\AA] ; \alpha\left[^{\circ}\right]\) & 6.974(1); 99.96(1) \\
\hline \(b[\AA] ; \beta\left[^{\circ}\right]\) & 7.876(1); 95.92(1) \\
\hline \(c[\AA] ; \gamma\left[{ }^{\circ}\right]\) & 9.808(1); 97.05(1) \\
\hline \(V\left[\AA^{3}\right]\) & 522.3(1) \\
\hline Z & 2 \\
\hline \(\rho_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]\) & 1.572 \\
\hline \(\mu_{\mathrm{MoK} \alpha}\left[\mathrm{mm}^{-1}\right]\) & 0.302 \\
\hline \(F(000)\) & 256 \\
\hline crystal size [ \(\mathrm{mm}^{3}\) ] & \(0.39 \times 0.36 \times 0.22\) \\
\hline \(\theta\) range (deg) & 2.65 to 27.50 \\
\hline index ranges & \[
\begin{aligned}
& -9 \text { to } 9, \\
& -10 \text { to } 10, \\
& -12 \text { to } 12
\end{aligned}
\] \\
\hline Reflections collected & 13956 \\
\hline Unique data obsd data \([\mathrm{I}>2 \sigma(\mathrm{I})]\) & \[
\begin{gathered}
2389\left[\mathrm{R}_{\text {int }}=0.034\right] \\
2086
\end{gathered}
\] \\
\hline Goodness-of-fit on \(\mathrm{F}^{2}\) & 1.159 \\
\hline final \(R^{a}\) indices [ \(\mathrm{I}>2 \sigma(\mathrm{I})\) ] & \[
\begin{gathered}
R 1=0.042, \\
\mathrm{w} R 2=0.104
\end{gathered}
\] \\
\hline \(R^{b}\) indices (all data) & \[
\begin{gathered}
R 1=0.050 \\
\mathrm{w} R 2=0.112
\end{gathered}
\] \\
\hline largest diff. peak/hole [e \(\AA^{-3}\) ] & 0.424/-0.747 \\
\hline
\end{tabular}
```


## Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra for compounds 8a-c, 3ba, 3d, e, 4aa, 5aa-bb, 4ca-4cb, 4d, 4f

[^1]${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$

${ }^{13} \mathrm{C}-\mathrm{NMR} 75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$



${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$


${ }^{13} \mathrm{C}-\mathrm{NMR} 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ 哙


| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$






H-NMR $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$







${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$






| 1 | , | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 1 , 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 |  | 0 | 100 |

${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$






|  |  |  |  |  |  |  | 1 |  | 1 |  |  |  | 1 | 1 | 1 | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 |  | 70 | 60 | 50 | 40 | 30 | 20 | 10 |  | 0 |

${ }^{1} \mathrm{H}-\mathrm{NMR} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR} 75 \mathrm{MHz}, \mathrm{CDCl}_{3} \underset{\sim}{\hat{\omega}} \underset{\sim}{\sim}$








3bb
${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$





${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$




$3 c b$



| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | 10 |

${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}-\mathrm{NMR} 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR} 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ m



${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$8.2(\mathrm{ppm})$





${ }^{1} \mathrm{H}-\mathrm{NMR} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



$\begin{array}{llllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1(\mathrm{ppm}) & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$
${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$




$\stackrel{+}{i}$
4ca


| T | 1 |  |  | 1 | 1 | 1 |  |  | 1 | 1 | 1 |  |  |  | 1 | 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 80 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 30 |  | 0 |  | - |

${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR} 126 \mathrm{MHz}, \mathrm{CDCl}_{\mathrm{m}}^{\text {nn }}$



${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{1} \mathrm{H}-\mathrm{NMR} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$





[^0]:    ${ }^{17}$ L. Kaczmarek, B. Pol. Acad. Sci.-Chem., 1985, 33, 401.

[^1]:    ${ }^{18}$ L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.
    ${ }^{19}$ G. M. Sheldrick, Acta Crystallogr., Sect. A 2015, 71, 3
    ${ }^{20}$ G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3.

