Electronic Supporting Information for Publication Studies on the preparation of aminobipyridines and bipyridine sultams via an intramolecular free radical pathway

Javier Recio, Fabiana Filace, Elena Gala, Adrián Pérez-Redondo, Julio Alvarez-Builla* and Carolina Burgos*

Departamento de Química Orgánica y Química Inorgánica and Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain

Table of contents

I.	Experimental details and characterization data for compounds:	
	8a-c	S2-S4
	3ba	S4
	3d, 3e	S4–S5
	3aa-cb	S5–S8
	4aa	S8–S9
	5aa–bb	S8–S11
	4ca–4cb, 4d, 4e	S11–S13
II.	X-ray crystallographic data for 5ba	S14
III.	Copies of ¹ H and ¹³ C-NMR spectra for compounds:	S15–S54
	8a-c, 3ba, 3d,e, 4aa, 5aa-bb, 4ca-4cb, 4d, 4e	

General Information

Reagents of the highest commercial quality were purchased and used without further purification, unless stated otherwise. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60FS-254) using UV light for visualization. Column chromatography was performed using silica gel (60 F254, 70-200 mm) as the stationary phase. All melting points were determined in open capillary tubes, on a Stuart Scientific SMP3 melting point apparatus. IR spectra were obtained on a Perkin–Elmer FTIR spectrum 2000 spectrophotometer. ¹H and ¹³C NMR spectra were recorded with either a Varian Mercury VX-300, Varian Unity 300, or Varian Unity 500 MHz spectrometer. Chemical shifts are given in ppm (δ) downfield from TMS. Coupling constants (J) are in hertz (Hz), and signals are described as follows: s, singlet; d, doublet; t, triplet; q, quadruplet; m, multiplet; br, broad. Samples were analyzed by high pressure liquid chromatography (HP 1260 series) coupled to a mass spectrometer Quadrupole (6120 series) from Agilent Tecnhologies. The chromatographic separation was carried out with a Luna C18 column (100 mm x 4,6 mm x 3 µm) (supplied by Phenomenex). LC conditions were: flow rate, 1 mL/min; mobile phases, water containing 0,1 % formic acid (A) and methanol containing 0.1 % formic acid (solvent B); elution gradient: 10-100 % B in 20 minutes, 100-10% for 1 min, and 10% for 5 min in order to re-equilibrate the column at the initial conditions; injected volumen, 5 µL; temperature 50 °C. High-resolution analyses (HRMS) were performed on an Agilent 6210 time-of-flight LC/MS. Compounds **6a**¹², **6b**¹¹, **10a**,**b**¹⁴ and **4cb**¹⁷ have been previously described.

Preparation of compounds 8a-8c, 3ba, 3d and 3e

N-(2-Bromo-3-pyridyl)pyridine-3-

sulfonamide 8a

Method C: To a stirred solution of 2-bromopyridin-3-amine 7a (173 mg, 1 mmol) in pyridine (2 mL), pyridine-3-sulfonyl chloride 6a (354 mg, 2 mmol) was portionwise added during 15 min, at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h. Then, at room temperature, the reaction mixture was treated with water (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (1:1 EtOAc/ hexanes) to supply 8a as a white solid (204 mg, 0.65 mmol, 65%). Mp: 164–165 °C. IR (KBr) v_{max} (cm⁻¹) 3062, 1581, 1339, 1169, 586. ¹H NMR (300 MHz, CD₃OD) δ (ppm) 8.85 (d, *J* = 2.3 Hz, 1H), 8.78

¹² Birch, M.; Sibley, G. E. M.; Law, D.; Oliver, J. D. PCT. Int. Appl., WO 2009144473 A1, 2009.

¹¹ Dupont-Passelaigue, E.; Le Roy, I.; Pignier, C. PCT. Int. Appl., WO 2012069503 A1, 2012.

¹⁴ (a) S. Blanchard, I. Rodriguez, C. Kuehm-Caubere, P. Renard, B. Pfeiffer, G. Guillaumet and P. Caubere, *Tetrahedron*, 2002, **58**, 3513; (b) G. Abbiati, E.M. Beccalli, G. Broggini, G. Paladino and E. Rossi, *Synthesis*, 2005, 2881.

¹⁷ L. Kaczmarek, B. Pol. Acad. Sci.-Chem., 1985, 33, 401.

(dd, J = 4.9, 1.6 Hz, 1H), 8.20 (dd, J = 4.7, 1.8 Hz, 1H), 8.11 (ddd, J = 8.1, 2.4, 1.6 Hz, 1H), 7.97 (dd, J = 8.0, 1.8 Hz, 1H), 7.57 (ddd, J = 8.1, 4.9, 0.8 Hz, 1H), 7.45 (dd, J = 8.0, 4.7 Hz, 1H). ¹³C NMR (75 MHz, CD₃OD) δ (ppm) 154.4, 148.9, 148.6, 140.0, 138.5, 138.0, 136.7, 134.2, 125.6, 125.0. HRMS (ESI-TOF) m/z calcd for C₁₀H₉⁷⁹BrN₃O₂S [M + H]⁺ 313.9593, found: 313.9591.

N-(3-Bromo-2-pyridyl)pyridine-3-sulfonamide 8b

Method C: To a stirred solution of 3-bromopyridin-2-amine **7b** (173 mg, 1 mmol) in pyridine (2 mL), pyridine-3-sulfonyl chloride **6a** (354 mg, 2 mmol) was portionwise added during 15 min, at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h. Then, at room temperature, the reaction mixture was treated with water (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (1:1 EtOAc/ hexanes) to supply **8b** as a white solid (132 mg, 0.42 mmol, 42%). Mp: 162–164 °C. IR (KBr) v_{max} (cm⁻¹) 3064, 1580, 1445, 1167, 917, 698. ¹H NMR (500 MHz, DMSO-*d*₆) δ (ppm) 10.84 (brs, 1H), 9.12 (brs, 1H), 8.79 (brs, 1H), 8.34 (brs, 1H), 8.11 (brs, 2H), 7.62 (brs, 1H), 6.98 (brs, 1H. HPLC-Ms (ES-API) 314.0, 316.0 [M + H]⁺, *t*_R 7.829 min (100%). HRMS (ESI-TOF) m/z calcd for C₁₀H₉⁷⁹BrN₃O₂S [M + H]⁺ 313.9593, found: 313.9588.

N-2-Bromo-3-pyridyl)pyridine-2-

sulfonamide 8c

Method C: To a stirred solution of 2-bromopyridin-3-amine **7a** (173 mg, 1 mmol) in pyridine (2 mL), pyridine-2-sulfonyl chloride **6b** (354 mg, 2 mmol) was portionwise added during 15 min, at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h. Then, at room temperature, the reaction mixture was treated with water (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (3:7 EtOAc/ hexanes) to supply **8c** as a white solid (194 mg, 0.62 mmol, 62%). Mp: 129–131 °C. IR (KBr) v_{max} (cm⁻¹) 3060, 1447, 1181, 593. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.68 (d, *J* = 4.7 Hz, 1H), 8.16 – 8.05 (m, 2H), 7.98 – 7.86 (m, 2H), 7.51 (ddd, *J* = 7.5, 4.7, 1.3 Hz, 1H), 7.29 (brs, 1H), 7.23 (dd, *J* = 8.0, 4.6 Hz,

1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 156.3, 150.6, 145.4, 142.1, 138.3, 131.1, 130.2, 127.6, 123.4,
122.5. HRMS (ESI-TOF) m/z calcd for C₁₀H₉⁷⁹BrN₃O₂S [M + H]⁺ 313.9593, found: 313.9587.

N-(3-Bromo-2-pyridyl)-N-methyl-pyridine-3-sulfonamide 3ba

Method C: To a stirred solution of 3-bromo-*N*-methyl-pyridin-2-amine **10a** (187 mg, 1 mmol) in pyridine (2 mL), pyridine-3-sulfonyl chloride **6a** (355 mg, 2 mmol) was portionwise added during 15 min, at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h. Then, at room temperature, the reaction mixture was treated with a saturated NaHCO₃ solution (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (7:3 EtOAc/ hexanes) to supply **3ba** as a white solid (192 mg, 0.58 mmol, 58%). Mp: 106–111 °C. IR (KBr) ν_{max} (cm⁻¹) 3060, 1575, 1409, 1163, 752, 603. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 9.09 (d, J = 1.7 Hz, 1H), 8.84 (dd, J = 4.8, 1.7 Hz, 1H), 8.34 (dd, J = 4.6, 1.7 Hz, 1H), 8.20 (ddd, J = 8.0, 2.2, 1.7 Hz, 1H), 8.05 (dd, J = 8.0, 1.7 Hz, 1H), 7.50 (dd, J = 8.1, 4.9 Hz, 1H), 7.19 (dd, J = 8.0, 4.6 Hz, 1H), 3.15 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 153.1, 152.4, 149.4, 147.8, 143.1, 136.7, 135.1, 125.1, 123.7, 121.7, 37.1. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₁⁷⁹BrN₃O₂S [M + H]⁺ 327.9750, found: 327.9751.

N-(3-Bromo-2-pyridyl)-N-methyl-pyridine-2-sulfonamide 3d

Method C: To a stirred solution of 3-bromo-*N*-methyl-pyridin-2-amine **10a** (187 mg, 1 mmol) in pyridine (2 mL), pyridine-2-sulfonyl chloride **6b** (354 mg, 2 mmol) was portionwise added during 15 min, at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h. Then, at room temperature, the reaction mixture was treated with a saturated NaHCO₃ solution (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (7:3 EtOAc/ hexanes) to supply **3d** as a white solid (203 mg, 0.62 mmol, 62%). Mp: 121–123 °C. IR (KBr) v_{max} (cm⁻¹) 3035, 1567, 1354, 1172, 607, 569. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.77 (d, *J* = 4.5 Hz, 1H), 8.21 (dd, *J* = 4.6, 1.7 Hz, 1H), 7.99 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.93 – 7.84 (m, 2H), 7.52 (ddd,

J = 6.7, 4.7, 2.2 Hz, 1H), 7.12 (dd, J = 8.0, 4.6 Hz, 1H), 3.43 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 157.3, 152.5, 149.9, 147.6, 142.9, 137.8, 126.8, 124.8, 123.3, 121.1, 38.3. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₁⁷⁹BrN₃O₂S [M + H]⁺ 327.9749, found: 327.9746.

N-(3-Bromo-5-methyl-2-pyridyl)-N-methyl-pyridine-2-sulfonamide 3e

Method C: To a stirred solution of 3-bromo-N,5-dimethyl-pyridin-2-amine **10b** (201 mg, 1 mmol) in pyridine (2 mL), pyridine-2-sulfonyl chloride **6b** (354 mg, 2 mmol) was portionwise added during 15 min, at room temperature. The reaction mixture was heated at reflux for an additional period of 5 h. Then, at room temperature, the reaction mixture was treated with a saturated NaHCO₃ solution (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (6:4 EtOAc/ hexanes) to supply **3e** as a white solid (318 mg, 0.93 mmol, 93%). Mp: 114–116 °C. IR (KBr) v_{max} (cm⁻¹) 3060, 1576, 1557, 1353, 1169, 743, 584. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.76 (dd, *J* = 4.7, 1.6 Hz, 1H), 8.02 (dd, *J* = 2.1, 0.7 Hz, 1H), 7.91–7.83 (m, 2H), 7.81 (dd, *J* = 2.1, 0.7 Hz, 1H), 7.50 (ddd, *J* = 6.7, 4.7, 2.1 Hz, 1H), 3.39 (s, 3H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 157.5, 150.1, 149.9, 148.1, 143.1, 137.7, 135.3, 126.7, 123.3, 120.7, 38.3, 17.7. HRMS (ESI-TOF) m/z calcd for C₁₂H₁₃⁷⁹BrN₃O₂S [M + H]⁺ 341.9905, found: 341.9894.

Preparation of compounds 3aa, 3ab, 3bb, 3ca and 3cb

N-(2-Bromo-3-pyridyl)-N-methyl-

pyridine-3-sulfonamide 3aa

To a stirred solution of *N*-(2-bromo-3-pyridyl)pyridine-3-sulfonamide **8a** (314 mg, 1 mmol) in dry DMF (3 mL) and at 0 °C, NaH 60% (48 mg, 1.2 mmol) was added. The reaction mixture was stirred for 20 min at the same temperature and methyl iodide (156 mg, 1.1 mmol, 68 μ L) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5h. The reaction mixture was treated with a saturated NaHCO₃ solution (10 mL) and extracted with EtOAc. The combined

organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (6:4 EtOAc/ hexanes) to supply **3aa** as a white solid (213 mg, 0.65 mmol, 65%). Mp: 82–84 °C. IR (KBr) v_{max} (cm⁻¹) 3063, 1561, 1350, 1163, 1040, 757, 568. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 9.02 (d, *J* = 2.3 Hz, 1H), 8.85 (dd, *J* = 4.9, 1.6 Hz, 1H), 8.37 (dd, *J* = 4.7, 1.8 Hz, 1H), 8.04 (ddd, *J* = 8.1, 2.4, 1.7 Hz, 1H), 7.76 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.48 (ddd, *J* = 8.0, 4.9, 0.8 Hz, 1H), 7.35 (dd, *J* = 7.8, 4.6 Hz, 1H), 3.31 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 153.7, 149.8, 148.4, 143.1, 140.5, 137.0, 135.7, 135.2, 123.8, 123.4, 38.0. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₁⁷⁹BrN₃O₂S [M + H]⁺ 327.9749, found: 327.9749.

N-(2-Bromo-3-pyridyl)-N-(methoxymethyl)pyridine-3-sulfonamide 3ab

To a stirred solution of *N*-(2-bromo-3-pyridyl)pyridine-3-sulfonamide **8a** (314 mg, 1 mmol) in dry DMF (3 mL) and at 0 °C, NaH 60% (48 mg, 1.2 mmol) was added. The reaction mixture was stirred for 20 min at the same temperature and methoxymethyl chloride (89 mg, 1.1 mmol, 84 μ L) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5h. The reaction mixture was treated with a saturated NaHCO₃ solution (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (4:6 EtOAc/ CH₂Cl₂) to supply **3ab** as a yellow solid (295 mg, 0.82 mmol, 82%). Mp: 82–84 °C. IR (KBr) ν_{max} (cm⁻¹) 3052, 1573, 1402, 1175, 1052, 743. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 8.92 (d, *J* = 2.2 Hz, 1H), 8.81 (dd, *J* = 4.8, 1.4 Hz, 1H), 8.37 (dd, *J* = 4.7, 1.8 Hz, 1H), 7.95 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.73 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.42 (dd, *J* = 8.0, 4.9 Hz, 1H), 7.34 (dd, *J* = 7.8, 4.7 Hz, 1H), 5.32 (brs, 1H), 4.83 (brs, 1H), 3.47 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 153.7, 150.2, 148.6, 143.8, 142.4, 136.2, 135.3, 133.7, 123.6, 123.3, 81.9, 56.5. HRMS (ESI-TOF) m/z calcd for C₁₂H₁₃⁷⁹BrN₃O₃S [M + H]⁺ 357.9856, found: 357.9851.

N-(3-Bromo-2-pyridyl)-N-(methoxymethyl)pyridine-3-sulfonamide 3bb

To a stirred solution of *N*-(3-bromo-2-pyridyl)pyridine-3-sulfonamide **8b** (314 mg, 1 mmol) in dry DMF (3 mL) and at 0 °C, NaH 60% (48 mg, 1.2 mmol) was added. The reaction mixture was stirred for 20 min at the same temperature and methoxymethyl chloride (89 mg, 1.1 mmol, 84 μ L) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5h. The reaction mixture was treated with a saturated NaHCO₃ solution (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (7:3 EtOAc/ hexanes) to supply **3bb** as a white solid (291 mg, 0.81 mmol, 81%). Mp: 102–103 °C. IR (KBr) ν_{max} (cm⁻¹) 3066, 1428, 1354, 1175, 1014, 621. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 9.10 (d, *J* = 2.2 Hz, 1H), 8.81 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.38 (dd, *J* = 4.6, 1.6 Hz, 1H), 8.22 (ddd, *J* = 8.1, 2.3, 1.7 Hz, 1H), 8.05 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.46 (ddd, *J* = 8.1, 4.9, 0.7 Hz, 1H), 7.21 (dd, *J* = 7.9, 4.6 Hz, 1H), 5.05 (s, 2H), 3.32 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 153.4, 151.1, 149.3, 147.9, 143.2, 137.4, 136.0, 125.3, 123.5, 122.5, 82.7, 57.0. HRMS (ESI-TOF) m/z calcd for C₁₂H₁₃⁷⁹BrN₃O₃S [M + H]⁺ 357.9856, found: 357.9849.

N-(2-Bromo-3-pyridyl)-N-methyl-pyridine-2-sulfonamide 3ca

To a stirred solution of *N*-2-bromo-3-pyridyl)pyridine-2-sulfonamide **8c** (314 mg, 1 mmol) in dry DMF (3 mL) and at 0 °C, NaH 60% (48 mg, 1.2 mmol) was added. The reaction mixture was stirred for 20 min at the same temperature and methyl iodide (156 mg, 1.1 mmol, 68 μ L) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5h. The reaction mixture was treated with a saturated NaHCO₃ solution (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (4:6 EtOAc/ hexanes) to supply **3ca** as a white solid (298 mg, 0.90 mmol, 90%). Mp: 80–84 °C. IR (KBr) ν_{max} (cm⁻¹) 3037, 1558, 1399, 1355, 1111, 742, 571. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.76 (d, *J* = 4.7 Hz, 1H), 8.32 (dd, *J* = 4.7, 1.8 Hz, 1H), 7.93–7.89 (m, 2H), 7.87 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.54 (ddd, *J* = 6.2, 4.7, 2.6 Hz, 1H), 7.30 (dd, *J* = 7.9, 4.7 Hz, 1H), 3.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 157.2, 150.3, 149.5, 144.0, 140.3, 138.3, 137.9, 127.2, 123.5, 123.0, 39.0. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₁⁷⁹BrN₃O₂S [M + H]⁺ 327.9749, found: 327.9746.

N-(2-Bromo-3-pyridyl)-N-(methoxymethyl)pyridine-2-sulfonamide 3cb

To a stirred solution of *N*-(2-bromo-3-pyridyl)pyridine-2-sulfonamide **8c** (314 mg, 1 mmol) in dry DMF (3 mL) and at 0 °C, NaH 60% (48 mg, 1.2 mmol) was added. The reaction mixture was stirred for 20 min at the same temperature and methoxymethyl chloride (89 mg, 1.1 mmol, 84 μ L) was added. The reaction mixture was stirred at the same temperature for 30 additional min and then at room temperature for 5h. The reaction was treated with a saturated NaHCO₃ solution (10 mL) and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (4:6 EtOAc/ hexanes) to supply **3cb** as a white solid (340 mg, 0.95 mmol, 95%). Mp: 134–136 °C. IR (KBr) ν_{max} (cm⁻¹) 3083, 2937, 1401, 1357, 1177, 1012, 742, 599. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.71 (d, *J* = 4.7 Hz, 1H), 8.33 (dd, *J* = 4.7, 1.8 Hz, 1H), 7.89 – 7.76 (m, 3H), 7.50 (dd, *J* = 7.3, 4.6 Hz, 1H), 7.28 (dd, *J* = 7.8, 4.7 Hz, 1H), 5.18 (brs, 2H), 3.47 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 157.4, 151.0, 150.3, 149.6, 142.8, 138.2, 132.4, 127.2, 123.2, 122.5, 82.8, 56.6. HRMS (ESI-TOF) m/z calcd for C₁₂H₁₃⁷⁹BrN₃O₃S [M + H]⁺ 357.9856, found: 357.9862.

Preparation of compounds 4aa, 5aa-bb, 4ca-cb, 4d and 4e

N- Methyl-2-(3-pyridyl)pyridin-3-amine 4aa and 5-methyldipyrido[3,2-c:3',2'-f]thiazine 6,6-dioxide 5aa

A solution of TTMSS (223 mg, 0.9 mmol) and AIBN (147 mg, 0.9 mmol) in dry *m*-xylene (10 mL) and dry acetonitrile (0.2 mL) was added dropwise, by using a syringe pump during 36 h, to a stirred solution of **3aa** (98 mg, 0.3 mmol) in dry *m*-xylene (1 mL) at 80 °C (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of **3aa** (TLC analysis). The resulting solution was concentrated, treated with a saturated NaHCO₃ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Separation and purification by TLC (silica gel, hexane/EtOAc (1:9)) provided **4aa** as white semisolid (9 mg, 0.049 mmol, 16%, $R_f = 0.15$) and **5aa** (28 mg, 0.133 mmol, 38%, $R_f = 0.40$). **4aa**: IR (KBr) v_{max} (cm⁻¹) 3423, 2925,

1581, 1498, 1161, 714. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.90 (d, J = 2.3 Hz, 1H), 8.64 (dd, J = 4.8, 1.7 Hz, 1H), 8.08 (dd, J = 4.7, 1.4 Hz, 1H), 7.96 (ddd, J = 7.8, 2.3, 1.7 Hz, 1H), 7.41 (ddd, J = 7.8, 4.9, 0.9 Hz, 1H), 7.20 (dd, J = 8.3, 4.7 Hz, 1H), 7.00 (dd, J = 8.3, 1.4 Hz, 1H), 4.05 (brs, 1H), 2.82 (d, J = 4.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 149.7, 149.4, 143.10, 142.3, 138.3, 136.6, 134.5, 123.9, 123.8, 117.1, 30.6. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₂N₃ [M + H]⁺ 186.1026, found: 186.1025. **5aa**: Mp: 158–162 °C. IR (KBr) ν_{max} (cm⁻¹) 3288, 1584, 1322, 1163, 728, 619. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 9.23 (d, J = 0.8Hz, 1H), 9.00 (d, J = 5.3 Hz, 1H), 8.64 (dd, J = 4.5, 1.5 Hz, 1H), 8.44 (dd, J = 5.3, 0.8 Hz, 1H), 7.63 (dd, J = 8.4, 1.5 Hz, 1H), 7.54 (dd, J = 8.4, 4.4 Hz, 1H), 3.53 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 153.3, 145.5, 143.5, 139.6, 138.9, 137.9, 130.3, 126.3, 126.0, 119.5, 31.6. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₀N₃O₂S [M + H]⁺ 248.0488, found: 248.0490.

5-(Methoxymethyl)dipyrido[3,2-c:3',2'-f]thiazine 6,6-dioxide 5ab

A solution of TTMSS (223 mg, 0.9 mmol) and AIBN (147 mg, 0.9 mmol) in dry *m*-xylene (10 mL) and dry acetonitrile (0.2 mL) was added dropwise, by using a syringe pump during 36 h, to a stirred solution of **3ab** (107 mg, 0.3 mmol) in dry *m*-xylene (1 mL) at 80 °C (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of **3ab** (TLC analysis). The resulting solution was concentrated, treated with a saturated NaHCO₃ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (5:95)) provided **5ab** as white solid (36.0 mg, 0.194 mmol, 64%). Mp: 158–162 °C. IR (KBr) v_{max} (cm⁻¹) 3055, 2944, 1655, 1584, 1345, 1183, 1080, 754. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 9.20 (d, *J* = 0.6 Hz, 1H), 8.99 (d, *J* = 5.3 Hz, 1H), 8.67 (dd, *J* = 4.5, 1.4 Hz, 1H), 8.42 (dd, *J* = 5.3, 0.7 Hz, 1H), 8.03 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.51 (dd, *J* = 8.4, 4.5 Hz, 1H), 5.26 (s, 2H), 3.52 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 153.4, 146.8, 143.2, 139.7, 139.6, 136.9, 131.4, 128.5, 126.5, 119.8, 80.3, 56.7. HRMS (ESI-TOF) m/z calcd for C₁₂H₁₂N₃O₃S [M + H]⁺ 278.0594, found: 278.0591.

6-Methyldipyrido[2,3-b:2',3'-d]thiazine 5,5-dioxide 5ba

A solution of TTMSS (223 mg, 0.9 mmol) and AIBN (147 mg, 0.9 mmol) in dry *m*-xylene (10 mL) and dry acetonitrile (0.2 mL) was added dropwise, by using a syringe pump during 36 h, to a stirred solution of **3ba** (98 mg, 0.3 mmol) in dry *m*-xylene (1 mL) at 80 °C (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of **3ba** (TLC analysis). The resulting solution was concentrated, treated with a saturated NaHCO₃ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (1:1)) provided **5ba** as white solid (41 mg, 0.166 mmol, 55%). Mp: 158–160 °C. IR (KBr) v_{max} (cm⁻¹) 3071, 1582, 1429, 1322, 1165, 887. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.95 (dd, J = 4.7, 1.7 Hz, 1H), 8.92 (dd, J = 7.8, 1.9 Hz, 1H), 8.58 (dd, J = 4.8, 1.9 Hz, 1H), 8.32 (dd, J = 8.0, 1.7 Hz, 1H), 7.53 (dd, J = 8.0, 4.8 Hz, 1H), 7.30 (dd, J = 7.8, 4.8 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 153.2, 150.8, 150.0, 147.1, 135.3, 130.5, 129.8, 123.1, 119.4, 118.4, 28.6. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₀N₃O₂S [M + H]⁺ 248.0488, found: 308.0491.

6-(Methoxymethyl)dipyrido[2,3-b:2',3'-d]thiazine 5,5-dioxide 5bb

A solution of TTMSS (223 mg, 0.9 mmol) and AIBN (147 mg, 0.9 mmol) in dry *m*-xylene (10 mL) and dry acetonitrile (0.2 mL) was added dropwise, by using a syringe pump during 36 h, to a stirred solution of **3bb** (107 mg, 0.3 mmol) in dry *m*-xylene (1 mL) at 80 °C (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of **3bb** (TLC analysis). The resulting solution was concentrated, treated with a saturated NaHCO₃ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (3:7)) provided **5bb** as white solid (44 mg, 0.158 mmol, 53%). Mp: 129–132 °C. IR (KBr) v_{max} (cm⁻¹) 2960, 1583, 1425, 1328, 1261, 1060, 841. ¹H NMR (500 MHz, CDCl₃) δ (ppm)

9.06 – 8.87 (m, 2H), 8.64 (dd, J = 4.7, 1.9 Hz, 1H), 8.33 (dd, J = 8.0, 1.6 Hz, 1H), 7.55 (dd, J = 8.0, 4.7 Hz, 1H), 7.37 (dd, J = 7.8, 4.8 Hz, 1H), 5.72 (s, 2H), 3.44 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 153.4, 151.3, 149.5, 147.5, 135.9, 130.9, 130.5, 123.3, 120.7, 119.4, 75.7, 57.4. HRMS (ESI-TOF) m/z calcd for C₁₂H₁₂N₃O₃S [M + H]⁺ 278.0594, found: 278.0596.

N-Methyl-2-(2-pyridyl)pyridin-3-amine 4ca

A solution of TTMSS (223 mg, 0.9 mmol) and AIBN (147 mg, 0.9 mmol) in dry *m*-xylene (10 mL) and dry acetonitrile (0.2 mL) was added dropwise, by using a syringe pump during 36 h, to a stirred solution of **3ca** (98 mg, 0.3 mmol) in dry *m*-xylene (1 mL) at 80 °C (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of **3ca** (TLC analysis). The resulting solution was concentrated, treated with a saturated NaHCO₃ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (7:3)) provided **4ca** as white solid (41 mg, 0.221 mmol, 74%). Mp: 66–68 °C. IR (KBr) v_{max} (cm⁻¹) 3062, 2982, 1582, 1339, 1170, 1113, 700, 587. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 9.19 (brs, 1H), 8.61 – 8.50 (m, 2H), 8.00 (dd, *J* = 4.4, 1.5 Hz, 1H), 7.79 (ddd, *J* = 8.2, 7.4, 1.9 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.03 (dd, *J* = 8.4, 1.4 Hz, 1H), 2.95 (d, *J* = 5.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 159.7, 146.5, 146.2, 136.6, 136.5, 135.7, 124.9, 122.5, 121.8, 117.7, 29.4. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₂N₃ [M + H]⁺ 186.1026, found: 186.1026.

2-(2-Pyridyl)pyridin-3-amine 4cb¹⁷

A solution of TTMSS (223 mg, 0.9 mmol) and AIBN (147 mg, 0.9 mmol) in dry *m*-xylene (10 mL) and dry acetonitrile (0.2 mL) was added dropwise, by using a syringe pump during 36 h, to a stirred solution of **3cb** (107 mg, 0.3 mmol) in dry *m*-xylene (1 mL) at 80 °C (bath temperature), under an atmosphere of dry

¹⁷ L. Kaczmarek, B. Pol. Acad. Sci.-Chem., 1985, 33, 401.

argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of **3cb** (TLC analysis). The resulting solution was concentrated, treated with a saturated NaHCO₃ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (7:3)) provided **4cb** as white solid (33 mg, 0.193 mmol, 64%). Mp: 102–106 °C. IR (KBr) v_{max} (cm⁻¹) 3389, 3264, 3044, 1601, 1446, 1147, 751, 631. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.57 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 8.50 (dt, *J* = 8.2, 1.0 Hz, 1H), 8.07 (dd, *J* = 4.2, 1.7 Hz, 1H), 7.81 (ddd, *J* = 8.2, 7.5, 1.9 Hz, 1H), 7.22 (ddd, *J* = 7.4, 4.9, 1.2 Hz, 1H), 7.09 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.04 (dd, *J* = 8.2, 1.7 Hz, 1H), 6.36 (brs, 2H). ¹³C NMR (126 MHz, CDCl₃) δ (ppm) 159.5, 147.0, 144.0, 138.2, 137.2, 136.7, 124.6, 124.5, 122.4, 122.0. HRMS (ESI-TOF) m/z calcd for C₁₀H₁₀N₃ [M + H]⁺ 172.0870, found: 172.0873.

N-Methyl-3-(2-pyridyl)pyridin-2-amine 4d

A solution of TTMSS (223 mg, 0.9 mmol) and AIBN (147 mg, 0.9 mmol) in dry *m*-xylene (10 mL) and dry acetonitrile (0.2 mL) was added dropwise, by using a syringe pump during 36 h, to a stirred solution of **3d** (98 mg, 0.3 mmol) in dry *m*-xylene (1 mL) at 80 °C (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of **3d** (TLC analysis). The resulting solution was concentrated, treated with a saturated NaHCO₃ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (7:3)) provided **4d** as yellow oil (47 mg, 0.254 mmol, 85%). IR (NaCl) v_{max} (cm⁻¹) 3418, 1595, 1519, 1386, 1241, 1100, 769, 569. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.93 (brs, 1H), 8.58 (d, *J* = 4.8 Hz, 1H), 8.21 (dd, *J* = 4.9, 1.8 Hz, 1H), 7.78 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.72 (dd, *J* = 7.1, 1.8 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.18 (ddd, *J* = 6.5, 4.9, 1.4 Hz, 1H), 6.59 (dd, *J* = 7.6, 4.9 Hz, 1H), 3.09 (d, *J* = 4.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 157.6, 149.1 (2C), 147.6, 137.0, 135.9, 121.7, 121.3, 116.1, 111.2, 28.2. HRMS (ESI-TOF) m/z calcd for C₁₁H₁₂N₃ [M + H]⁺ 186.1026, found: 186.1030.

N,5-Dimethyl-3-(2-pyridyl)pyridin-2-amine 4e

A solution of TTMSS (223 mg, 0.9 mmol) and AIBN (147 mg, 0.9 mmol) in dry *m*-xylene (10 mL) and dry acetonitrile (0.2 mL) was added dropwise, by using a syringe pump during 36 h, to a stirred solution of **3e** (103 mg, 0.3 mmol) in dry *m*-xylene (1 mL) at 80 °C (bath temperature), under an atmosphere of dry argon. When the addition was finished, the reaction mixture was stirred for an additional 12 h period, at the same temperature, until full consumption of **3e** (TLC analysis). The resulting solution was concentrated, treated with a saturated NaHCO₃ solution and the mixture extracted with EtAcO. The combined organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by TLC (silica gel, hexane/EtOAc (7:3)) provided **4e** as yellow oil (53 mg, 0.266 mmol, 89%). IR (KBr) v_{max} (cm⁻¹) 3423, 1666, 1618, 1221, 1019, 795, 568. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.60 (brs, 1H), 8.58 (dd, *J* = 4.9, 1.7 Hz, 1H), 8.04 (d, *J* = 2.2 Hz, 1H), 7.77–7.65 (m, 2H), 7.62 (d, *J* = 1.8 Hz, 1H), 7.18 (ddd, *J* = 7.1, 4.9, 1.4 Hz, 1H), 3.08 (d, *J* = 4.8 Hz, 3H), 2.25 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 157.6, 155.9, 148.6, 147.6, 137.0, 136.9, 121.7, 121.2, 119.7, 115.9, 28.5, 17.7. HRMS (ESI-TOF) m/z calcd for C₁₂H₁₄N₃ [M + H]⁺ 200.1182, found: 200.1179.

X-ray crystallographic data for 5ba

Colourless crystals of **5ba** were obtained from a recrystallization process in toluene. The crystals were covered with a layer of a viscous perfluoropolyether (FomblinY). A suitable crystal was selected with the aid of a microscope, mounted on a cryoloop, and placed in the low temperature nitrogen stream of the diffractometer. The intensity data sets were collected at 200 K on a Bruker-Nonius KappaCCD diffractometer equipped with an Oxford Cryostream 700 unit. Crystallographic data are presented in Table S1. The structure was solved, using the WINGX package,¹⁸ by intrinsic phasing methods (SHELXT),¹⁹ and refined by least-squares against F² (SHELXL-2014/7).²⁰ All non-hydrogen atoms were anisotropically refined, whereas hydrogen atoms were included, positioned geometrically and refined by using a riding model.

	5ba	
CCDC ^{<i>a</i>} code	1967009	
Formula	$C_{11}H_9N_3O_2S$	
$M_{ m r}$	247.27	
<i>T</i> [K]	200(2)	
λ[Å]	0.71073	
crystal system	Triclinic	
space group	<i>P</i> –1	
<i>a</i> [Å]; α [°]	6.974(1); 99.96(1)	
<i>b</i> [Å]; β [°]	7.876(1); 95.92(1)	
<i>c</i> [Å]; γ [°]	9.808(1); 97.05(1)	
V[Å ³]	522.3(1)	
Ζ	2	
$\rho_{\text{calcd}} \left[\text{g cm}^{-3} \right]$	1.572	
$\mu_{\rm MoK\alpha} [\rm mm^{-1}]$	0.302	
F(000)	256	
crystal size [mm ³]	0.39×0.36×0.22	
θ range (deg)	2.65 to 27.50	
index ranges	-9 to 9,	
	-10 to 10,	
	-12 to 12	
Reflections collected	13956	
Unique data	2389 $[R_{int} = 0.034]$	
obsd data [I> $2\sigma(I)$]	2086	
Goodness-of-fit on F ²	1.159	
final R^a indices [I>2 σ (I)]	R1 = 0.042,	
	wR2 = 0.104	
R^b indices (all data)	R1 = 0.050,	
	wR2 = 0.112	
largest diff. peak/hole [e Å ⁻³]	0.424/-0.747	
largest diff. peak/hole [e Å ⁻³]	$wR2 = 0.112$ $0.424/-0.747$ $wR2 = ([\Sigma]E_{-1}] wR2 = ([\Sigma]E_{-1}) wR2 = ([\Sigma]E_{-1})$	v(F.

 Table S1. Experimental data for the X-ray diffraction study on 5ba.

Cambridge Crystallographic Data Centre. ${}^{b}R1 = \Sigma ||F_{0}| - |F_{c}|| / [\Sigma|F_{0}|], wR2 = \{[\Sigma w(F_{0}^{2} - F_{c}^{2})^{2}] / [\Sigma w(F_{0}^{2})^{2}]\}^{1/2}$

Copies of ¹H and ¹³C-NMR spectra for compounds 8a-c, 3ba, 3d,e, 4aa, 5aa-bb, 4ca-4cb, 4d, 4f

¹⁸ L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.

¹⁹ G. M. Sheldrick, Acta Crystallogr., Sect. A 2015, 71, 3.

²⁰ G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3.

¹³C-NMR 75 MHz, CD₃OD

¹H-NMR 300 MHz, CDCl₃

¹H-NMR 300 MHz, CDCl₃

¹H-NMR 300 MHz, CDCl₃

