Electronic Supplementary Information

Sucrose templated interconnected meso/macroporous 2D symmetric graphitic carbon network as support for α -Fe₂O₃ towards an improved supercapacitive behavior

Jacob Otabil Bonsu^a, Jeong In Han^{b*}

- a. Department of Energy and Materials Engineering, Dongguk University Seoul, Pildong, Jung-gu, 04620, Seoul, South Korea.
- b. *Department of Chemical and Biochemical Engineering, Dongguk University Seoul,
 04620, South Korea.

*E-mail: hanji@dongguk.edu

(Fe(NO₃)₃ · 9H₂O) Iron(III) nitrate <u>nonahydrate</u>

Sucrose ($C_{12}H_{22}O_{11}$)

Mixed pristine solution

Solid product after combustion at 150 °C

After calcination at 350 °C for 6 h

Figure S1: Synthesis procedure for 2D C@ α -Fe₂O₃ and α -Fe₂O₃.

Figure S2: TGA Curves for 2D C@ $\alpha\text{-}Fe_2O_3$ and $\alpha\text{-}Fe_2O_3$ at a constant heating rate of 10 °C min^-1

Figure S3: (a) CV for 2D C@ α -Fe₂O₃ with potential window from -0.8~0; (b) GCD for 2D C@ α -Fe₂O₃ with potential window from -0.8~0; (c) CV for Nickel foam; (d) CV for Nickel foam.

Figure S4: (a) (c) Comparison of CV curves for α -Fe₂O₃ and 2D C@ α -Fe₂O₃ at 50 mV/s scan rate; (b) Comparison of GCD curves for 2D C@ α -Fe₂O₃ and α -Fe₂O₃ at 1 A/g; (c) Plot of specific capacitance as a function of current density; (d) equivalent circuit for hematite.

Figure S5: Comparative study for Ragone plot of 2D C@ α -Fe₂O₃ and α -Fe₂O₃.