Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Reduced Graphene Oxide Supported ZnO Quantum Dots for visible Light Induced Simultaneous Removal of Tetracycline and Cr(VI)

K.V. Ashok Kumar^a, Bhairi Lakshminarayana^a, D. Suryakala^b Ch. Subrahmanyam^{a, *}

^a Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi-502285, Telangana (India)

^b Department of Chemistry, GITAM University, Visakhapatnam-530045, Andhra Pradesh (India)

Corresponding author: Phone: +91-40-23016050; Fax: +91-40-2301 6032; E-mail:

csubbu@iith.ac.in

Supporting Information:

Fig. S1: Degradation profiles of tetracycline in aqueous solution. ZnO percentage vary from 0.5% to 2%, Irradiation Time=120 min, catalyst amount=50mg/L, Tetracycline concentration=20 ppm.

Fig. S2: Degradation percentages of tetracycline in aqueous solution. ZnO percentage vary from 0.5% to 2%, Irradiation Time=120 min, catalyst amount=50mg/L, Tetracycline concentration=20

ppm.

Fig. S3: The degradation profiles of Cr(VI) in aqueous solution. ZnO percentage vary from 0.5% to 2%, Irradiation Time=120 min, catalyst amount=50 mg/L, Cr(VI) concentration=20 ppm.

Fig. S4: Degradation percentages of Cr(VI) in aqueous solution. ZnO percentage vary from 0.5% to 2%, Irradiation Time=120 min, catalyst amount=50mg/L, Cr(VI) concentration=20 ppm.

Fig. S5: The degradation profiles of simultaneous removal of tetracycline and Cr(VI) Irradiation time = 120 min, catalyst amount $\mathbf{R} = 50 \text{ mg/L}$.

Fig. S6: The degradation percentages of simultaneous removal of tetracycline and Cr(VI) Irradiation time = 120 min, catalyst amount $\mathbf{R} = 50$ mg/L.

Fig. S7: The degradation profiles of various (a) tetracycline and (b) Cr(VI) concentration. Irradiation time = 120 min, catalyst amount $\mathbf{R} = 50 \text{ mg/L}$.

Fig. S8: The degradation percentages of various (a) tetracycline and (b) Cr(VI) concentration. Irradiation time = 120 min, catalyst amount $\mathbf{R} = 50 \text{ mg/L}$.

Fig. S9: The degradation profiles of different amounts of catalysts. Irradiation time = 120 min, Tetracycline concentration = 20 ppm, Cr(VI) concentration = 20 ppm

Fig. S10: The degradation percentages of different amounts of catalysts. Irradiation time = 120 min, Tetracycline concentration = 20 ppm, Cr(VI) concentration = 20 ppm

Fig. S11: The degradation profiles of various pH values. Irradiation time =120 min, catalyst amount R = 50 mg/L, Tetracycline concentration = 20 ppm, Cr(VI) concentration = 20 ppm.

Fig. S12: The degradation percentages of various pH values. Irradiation time =120 min, catalyst amount R = 50 mg/L, Tetracycline concentration = 20 ppm, Cr(VI) concentration = 20 ppm.