Supporting Information

A pH tuning single fluorescent probe based on naphthalene for multi-analytes (Mg²⁺ and Al³⁺) and its application in cell imaging

Yu Chunwei^a, Cui Shuhua^b, Ji Yuxiang^a, Wen Shaobai^a, Jian Li^a, Zhang Jun^{a,c*}

^aLaboratory of Environmental Monitoring, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P. R. China;

^bWeifang University of Science and Technology, Shouguang, Shandong 262700, P. R. China; ^cKey Laboratory of Tropical Translalional Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan medical University, Haikou, Hainan 571199, P. R. China.

*Corresponding author E-mail address: jun_zh1979@163.com (J. Zhang)

Fig. S1 ESI-MS mass spectra of compound P.

Fig. S2 ¹H NMR spectrum of compound P.

29 in DMSO(c13)

Fig. S3 ¹³C NMR spectrum of compound P.

Fig. S4 Influences of pH on the fluorescence spetra of **P** (10 μ M) and **P** (10 μ M) plus Al³⁺ (10 μ M) in the ethanol–water solution (1:9, v:v). The pH was modulated by adding 1.0 M HCl or 1.0 M NaOH in HEPES buffers.

Fig. S5 Influences of pH on the fluorescence spetra of **P** (10 μ M) and **P** (10 μ M) plus Mg²⁺ (10 μ M) in the ethanol–water solution (1:9, v:v). The pH was modulated by adding 1.0 M HCl or 1.0 M NaOH in HEPES buffers.

Fig. S6 a) Fluorescence response of **P** (10 μ M) to 10 μ M of Al³⁺ and to the mixture of 10 μ M individual other metal ions with 10 μ M of Al³⁺ in ethanol-water solution (1:9, v:v, 20 mM HEPES, pH 6.3); b) Fluorescence response of **P** (10 μ M) to 10 μ M of Al³⁺and to the mixture of 10 μ M individual anions with 10 μ M of Al³⁺in ethanol-water solution (1:9, v:v, 20 mM HEPES, pH 6.3).

Fig. S7 a) Fluorescence response of **P** (10 μ M) to 10 μ M of Mg²⁺and to the mixture of 10 μ M individual other metal ions with 10 μ M of Mg²⁺ in ethanol-water solution (1:9, v:v, pH 9.4, 20 mM HEPES); b) Fluorescence response of **P** (10 μ M) to 10 μ M of Mg²⁺ and to the mixture of 10 μ M individual anions with 10 μ M of Mg²⁺in ethanol-water solution (1:9, v:v, pH 9.4, 20 mM HEPES).

Fig. S8 Fluorescence response in ethanol-water solution (1:9, v:v, pH 6.3, 20 mM HEPES): a) **P** (10 μ M); b) **P** (10 μ M) with Al³⁺ (10 μ M); (c) **P** (10 μ M) with Al³⁺ (10 μ M) and then addition of EDTA (50 μ M); (d) **P** (10 μ M) with Al³⁺ (10 μ M) and then addition of EDTA (50 μ M) and then addition of 0.1 mM Al³⁺.

Fig. S9 Fluorescence response in ethanol-water solution (1:9, v:v, pH 9.4, 20 mM HEPES): a) **P** (10 μ M); b) **P** (10 μ M) with Mg²⁺ (10 μ M); (c) **P** (10 μ M) with Mg²⁺ (10 μ M) and then addition of EDTA (50 μ M); (d) **P** (10 μ M) with Mg²⁺ (10 μ M) and then addition of EDTA (50 μ M) and then addition of 0.1 mM Mg²⁺.

Fig. S10 Partial ESI-MS of **P** in the presence of 1.0 equiv. of Al^{3+} in ethanol.

Fig. S11 Partial ESI-MS of **P** in the presence of 1.0 equiv. of Mg^{2+} in ethanol.

Fig. S12 Benesi-Hildebrand plot of P, assuming 1:1 stoichiometry for P-Al³⁺.

Fig. S13 Benesi-Hildebrand plot of P, assuming 1:1 stoichiometry for P-Mg²⁺.

Fig. S14 ¹H NMR of **P**-Mg²⁺. (Nuclear magnetic resonance (NMR) spectra were measured with a Brucker AV 600 instrument and chemical shift were given in ppm from tetramethylsilane (TMS)).

Fig. S15 Cell viability values (%) estimated by MTT proliferation test versus incubation concentrations of P. HepG2 cells were cultured in the presence of $0-10 \mu$ M P at 37 °C.