Multiple-Responsive Supramolecular Vesicle Based on Azobenzene-Cyclodextrin Host-Guest Interaction

Jiao Wang,* Ting Wang, Xiaohui Liu, Yan Lu, Jingjing Geng

Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, China

***Corresponding author:** Jiao Wang

Address:

Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, China

E-mail: wangjiao@tynu.edu.cn

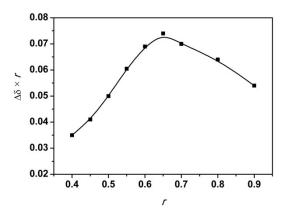


Fig. S1 ¹H NMR Job's plot corresponding to the chemical shift of H-5 of β -CD in D₂O. [HPB]+[β -CD] =1.0 mM.

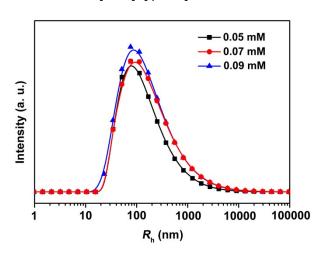
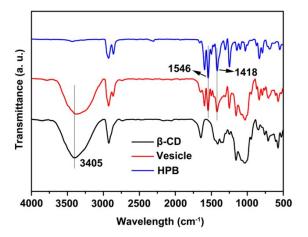
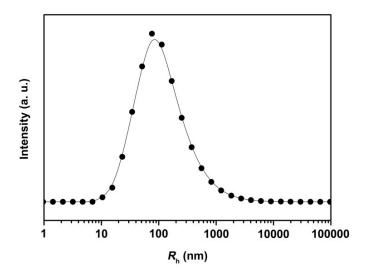
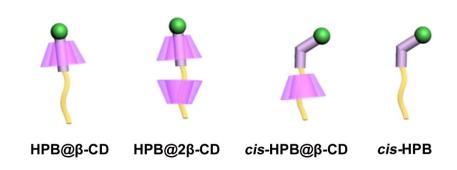
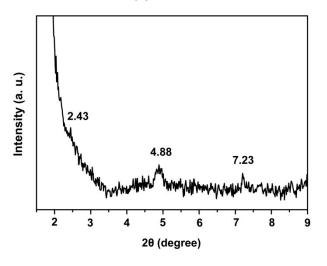


Fig. S2 Hydrodynamic radius (R_h) distribution determined by DLS for HPB@ β -CD aqueous solution at different concentration.


Fig. S3 FTIR spectra of pure β -CD, HPB and dehydrated vesicles from 0.1 mM HPB@ β -CD sample.

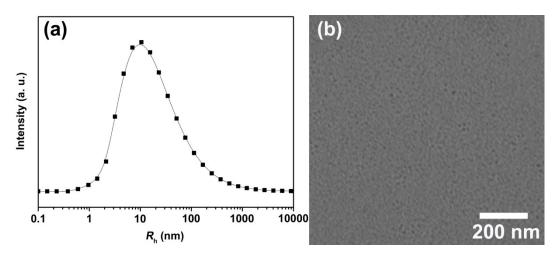

Fig. S4 Hydrodynamic radius (*R*_h) distribution determined by DLS for the reformed vesicles.

Fig. S5 Molecular structure models of HPB@β-CD, HPB@2β-CD, *cis*-HPB@β-CD and *cis*-HPB.

Fig. S6 XRD pattern of microbelts from 0.1 mM HPB@β-CD sample at pH = 4.5. The sample was dried in vacuum at room temperature.

Fig. S7 Hydrodynamic radius (R_h) distribution (a) determined by DLS and TEM (b) for micelles from 0.1 mM HPB@β-CD aqueous solution after adding ADA at 25 °C.

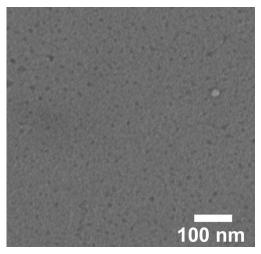


Fig.S8 TEM (b) of micelles formed in 0.1 mM HPB@ β -CD sample after adding α -amylase.