Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Tunable Microwave Absorption of Switchable Complexes Operating Near Room Temperature

Olesia I. Kucheriv,^a Viktor V. Oliynyk,^b Volodymyr V. Zagorodnii,^b Vilen L. Launets,^b Olena V. Penkivska,^b Igor O. Fritsky,^a and Il'ya A. Gural'skiy^{a*}

^aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., Kyiv 01601, Ukraine

^bDepartment of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., Kyiv 01601, Ukraine

Contents

Figure S1. IR spectrum of 1.	S2	
Figure S2. IR spectrum of 2.	S2	
Figure S3. TGA of 1.	S 3	
Figure S4. TGA of 2.	S 3	
Table S1. Interpretation of IR bands of 1 and 2.	S4	
Table S2. Comparison of microwave reflection/transmission parameters	of 1 ,	2
$[Fe(Htrz)_2(trz)]BF_4$ and VO ₂ .	S4	

Figure S1. IR spectrum of as received (top) and dehydrated (down) sample of **1** recorded using ATR technique at room temperature.

Figure S2. IR spectrum of as received (top) and dehydrated (down) sample of **2** recorded using ATR technique at room temperature.

Figure S3. TGA of **1** showing the loss of 5.63% of mass up to 100 °C due to evaporation of residual traces of solvents.

Figure S4. TGA of 2 showing the loss of 1.99% of mass up to 100 °C due to evaporation of residual traces of solvents.

	$1 [Fe(NH_2trz)_3]Br_2$	$2 [Fe(NH_2trz)_3](NO_3)_2$			
Ring deformation	690	697			
ω(NH ₂)	867	821			
Ring deformation	995, 1026	994, 1030			
δ(CH)	1096	1099			
ν(N-NH ₂)	1215	1219			
v(NO)	- 1336				
Ring deformation	1479, 1543	1545			
δ(NH ₂)	1619	1626			
$\nu(NH_2), \nu(CH),$	3000-3500	3000-3500			
v(OH) of water					
molecules					

Table S1. Interpretation of IR bands of 1 and 2.

v – stretching, δ – bending (scissoring), ω – out-of-plane bending

Table S2. Comparison of microwave reflection/transmission parameters of 1, 2, $[Fe(Htrz)_2(trz)]BF_4^1$ and VO₂.²

	[Fe(NH ₂ trz) ₃]Br ₂		$[Fe(NH_2trz)_3](NO_3)_2$		[Fe(Htrz) ₂ (trz)]BF ₄		VO ₂ *	
	32 GHz		28.5 GHz		27 GHz		30 GHz	
	LS	HS	LS	HS	LS	HS	LT	HT
S ₁₁ (dB)	-17.9	-10.8	-9.7	-12.9	Not measured		-1	-10
S ₂₁ (dB)	-3.1	-4.6	-3.6	-5.0	-0.9	-1.3	-15	-4

LT – low temperature (below phase transition)

HT – high temperature (above phase transition)

* Values of S_{11} and S_{21} for VO₂ are deduced from the figure in ref. 2.

- (1) Kucheriv, O. I.; Oliynyk, V. V.; Zagorodnii, V. V.; Launets, V. L.; Gural'skiy, I. A. Spin-Crossover Materials towards Microwave Radiation Switches. *Sci. Rep.* **2016**, *6* (1), 38334.
- Yang, S.; Vaseem, M.; Shamim, A. Fully Inkjet-Printed VO₂ -Based Radio-Frequency Switches for Flexible Reconfigurable Components. *Adv. Mater. Technol.* 2019, *4* (1), 1800276.