Supplementary information

Anisotropic Mesoporous Silica/Microgel Core-Shell Responsive

Particles

Julien Schmitt^{a,b}, Caroline Hartwig^a, Jérôme J. Crassous^{a,c}, Adriana M. Mihut^a, Peter Schurtenberger^{a,d}

and Viveka Alfredsson^a

^a Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden.

^bLSFC Laboratoire de Synthèse et Fonctionnalisation des Céramiques UMR 3080 CNRS / Saint-Gobain CREE, Saint-Gobain Research Provence, 550 avenue Alphonse Jauffret, Cavaillon, France

^c Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany,

^d Lund Institute of advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden.

Figure S1: SEM micrographs of silica (a) platelets, (b) primary particles and (c) rods from

powder deposition on the stub

Figure S2: SEM micrographs of hybrid silica/PNIPAM (a) platelets, (b) primary particles and (c) rods from droplet deposition of a 0.2wt% suspension on a glass coverslip then deposited on the stub. The black arrows highlight the PNIPAM bridges between particles

<u>Figure S3:</u> SEM micrographs of hybrid silica/PNIPAM (a) platelets, (b) primary particles and (c) rods obtained after spin-coating of suspensions of particles at 0.01 wt% on a glass surface.

Figure S4: Cryo-TEM micrographs of hybrid silica/PNIPAM (a and b) platelets, (c and d) primary particles and (e and f) rods from dispersions at 0.2 wt% at 20°C.

<u>Figure S5:</u> Plot of *Γ* versus q^2 , with *Γ* extracted using the second order cumulant analysis of the correlation function $g^1(\tau)$, obtained from DLS measurements at 50° (q=11.18 µm⁻¹), 90° (q=18.70 µm⁻¹) and 110° (q=21.67 µm⁻¹) for hybrid silica/PNIPAM rods at 18°C. The fit in blue gives the translational diffusion coefficient D_t (µm².s⁻¹) (*Γ* = $D_t q^2$)

<u>Video S1:</u> CLSM video of a suspension made of hybrid core-shell silica/PNIPAM rods at 2wt% and 25°C without electric field

<u>Video S2</u>: CLSM video of a suspension made of hybrid core-shell silica/PNIPAM rods at 2wt% and 25°C under an alternate electric field, with a field strength E=50 kV/m and

frequency f=160 kHz. The rods are aligned along the direction of the field, along the imaging plane.