Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Data

Synthesis and application of tuneable carbon-silica composites from the microwave

pyrolysis of waste paper for selective recovery of gold from acidic solutions

Konstantina Sotiriou,^a Nontipa Supanchaiyamat,^b Tengyao Jiang,^a Intuorn Janekarn,^b Andrea Muñoz

García,^a Vitaliy L. Budarin,^a Duncan J. MacQuarrie^a and Andrew J. Hunt ^{b*}

^a Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK

^b Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

*Corresponding authors email: andrew@kku.ac.th

NITROGEN ADSORPTION/ DESORPTION POROSIMETRY

Fig. S1 Pore size distribution curves of silica gel K60 and CSCs

INFRARED DATA

Functional Group	Characteristic	Notes
	Adsorption	
O-H stretch	3200-3550 cm ⁻¹	Due to the presence of carboxylic
		acids
Alkyl C-H stretch	2950-2850 cm ⁻¹	Aliphatic chains of bio-oil
C=O stretch	1790-1680 cm ⁻¹	Due to the presence of carboxylic
		acids, esters, ketones, aldehydes.
Si-O-Si asymmetric stretch	1150-100 cm ⁻¹	Due to interaction of silanol groups
		and bio-oil.
Si-O-Si symmetric stretch	900-700 cm ⁻¹	Due to interaction of silanol groups
		and bio-oil.

Table S1 Adsorption bands observed in IR spectra of CSCs

X-RAY PHOTOEMISSION SPECTROSCOPY DATA

Table S2 Carbon nature and corresponding binding energies for peak deconvolution of C1s spectra of CSCs

Carbon Nature	Binding Energy/ eV
C=C sp ²	284-284.6
C-C sp ³	284.6-285.1
С-О(С-О-С, С-О-Н)	285.5-286.9
С=О	287.1-287.7
C-O-Si	288-290

Element	Nature	Binding Energy / eV
Au (4f 7/2)	Au(0)	84.2 ± 0.4
Au (4f 5/2)	Au(0)	87.9 ± 0.4
Au (4f 7/2)	Au(I)	85.8 ± 0.4
Au (4f 5/2)	Au(I)	86.2 ± 0.4
Au (4f 7/2)	Au(III)	86.4 ± 0.2
Au (4f 5/2)	Au(III)	90.1 ± 0.2

Table S3 Gold nature and corresponding binding energies for peak deconvolution of Au4f spectra of CSCs

Au4f XPS Spectra

Fig. S2 Au4f spectrum for CSC300 after adsorption in 300 mg L^{-1} of AuCl₃

Fig. S3 Au4f spectrum for CSC300 after adsorption in 50 mg L⁻¹ of AuCl₃

Fig. S4 Au4f spectrum for CSC500 after adsorption in 500 mg L⁻¹ of AuCl₃

Fig. S5 Au4f spectrum for CSC500 after adsorption in 300 mg L⁻¹ of AuCl₃

Fig. S6 Au4f spectrum for CSC500 after adsorption in 100 mg L^{-1} of AuCl₃

Fig. S7 Au4f spectrum for CSC500 after adsorption in 50 mg L^{-1} of AuCl₃

Fig. S8 Au4f spectrum for CSC800 after adsorption in 300 mg L⁻¹ of AuCl₃

Fig. S9 Au4f spectrum for CSC800 after adsorption in 50 mg L^{-1} of AuCl₃

POWDER X-RAY DIFFRACTION

Fig. S10 Small Angle XRD patterns of silica gel K60 and CSCs

SCANNING ELECTRON MICROSCOPY- ENERGY DISPERSIVE X-RAY ANALYSIS

Fig. S11 SEM- EDX of CSC300

Fig. S12 SEM- EDX mapping of C, Si and O for CSC300

Fig. S13 SEM- EDX of CSC500

Fig. S14 SEM- EDX mapping of C and Si for CSC500

Fig. S15 SEM- EDX of CSC800

GOLD ADSORPTION DATA

Gold Selectivity of CSCs

Linear model fittings: Langmuir model

Linear model fittings: Freundlich model

Linear model fittings: D-R model

MICROWAVE PYROLYSIS SETUP

