Figure Captions

Fig. S1. Particle size distribution of BHP-char and NH₄Cl-BHP-char/Fe₃O₄.

Fig. S2. TG and DTG profiles of BHP-char and NH₄Cl-BHP-char/Fe₃O₄.

Fig.S3. SEM micrographs of (a) and (d) BHP-char, (b) and (e) NH₄Cl-BHP-char, and (c) and (f) NH₄Cl-BHP-char/Fe₃O₄.

Fig.S4. FTIR spectra of NH₄Cl-BHP/Fe₃O₄ before and after co-adsorption of Zn^{2+} and TC.

Table Captions

Table S1. Structure and properties of TC.

Table S2. Particle size distribution of BHP-char and NH₄Cl-BHP-char/Fe₃O₄.

Table S3. Parameters of pseudo-first-order and pseudo-second-order models for the adsorption of TC and Zn(II) on BHP-char and NH₄Cl-BHP-char/Fe₃O₄.

Table S4. Parameters of isotherms for the adsorption of TC and Zn(II) on BHP-char and NH₄Cl-BHP-char/Fe₃O₄. Conditions: pH of single-component adsorption of TC was 4.0, pH of single-component adsorption of Zn(II) was 6.5, pH of co-adsorption of TC/Zn(II) was 6.0, adsorbent concentrations 0.5 g L⁻¹, temperature 25 °C, contact

time 120 min.

Table S5. Parameters of thermodynamic for the adsorption of TC and Zn(II) on BHPchar and NH₄Cl-BHP-char/Fe₃O₄. Conditions: pH of single-component adsorption of TC was 4.0, pH of single-component adsorption of Zn(II) was 6.5, pH of coadsorption of TC/Zn(II) was 6.0, adsorbent concentrations 0.5 g L⁻¹, initial TC/Zn(II) concentrations 25 mg L⁻¹, contact time 120 min.

Table S6. Constants of film diffusion model for TC and Zn(II) on BHP and NH₄Cl-BHP-char/Fe₃O₄.

Table S7. Constants of Intra-particle diffusion model for TC and Zn(II) on BHP and NH₄Cl-BHP-char/Fe₃O₄.

Сотро	nd Chemical formu	ula Molecular weight	Density (g cm ⁻³)	Refractive index	Melting point (°C)	flash point (°C)	Molecular structure
Tetracyc	line C ₂₂ H ₂₄ N ₂ O ₈	444.43	1.644	1.650	172-174	431.9	OH O OH

Table S1. Structure and properties of TC.

Adsorbent	D10ª (µm)	D50 ^b (µm)	D90° (µm)
BHP-char	34.73	101.1	211.3
NH ₄ Cl-BHP-char/Fe ₃ O ₄	0.969	3.889	8.984

Table S2. Particle size distribution of BHP-char and NH₄Cl-BHP-char/Fe₃O₄.

^a Particle diameter corresponding to 10% cumulative (from 0 to 100%) undersize particle size distribution;

^b Particle diameter corresponding to 50% cumulative (from 0 to 100%) undersize particle size distribution;

^c Particle diameter corresponding to 90% cumulative (from 0 to 100%) undersize particle size distribution.

			Pseudo	-first-orde	r model	Pseudo-second-order model		
Single-component adsorption	Adsorbent	$q_{e,exp}$ (mg g ⁻¹)	k ₁ (1 min ⁻¹)	R ²	$q_{e,cal}$ (mg g ⁻¹)	k ₂ (g mg ⁻¹ min ⁻¹)	R ²	$q_{e,cal}$ (mg g ⁻¹)
TO	BHP-char	28.80	0.0328	0.9759	21.53	0.0050	0.9929	28.99
IC	NH ₄ Cl-BHP-char/Fe ₃ O ₄	47.55	0.0307	0.9921	38.02	0.0022	0.9959	48.78
72+	BHP-char	38.26	0.0734	0.9798	25.33	0.0074	0.9977	39.53
Zn^{2+}	NH ₄ Cl-BHP-char/Fe ₃ O ₄	49.23	0.0691	0.9791	28.51	0.0094	0.9931	48.08
			Pseudo-first-order model					
			Pseudo	-first-orde	r model	Pseudo-seco	ond-order	model
Co-adsorption	Adsorbent	q _{e,exp} (mg g ⁻¹)	Pseudo k ₁ (1 min ⁻¹)	R ²	r model $q_{e,cal}$ (mg g ⁻¹)	Pseudo-seco k ₂ (g mg ⁻¹ min ⁻¹)	R ²	model q _{e,cal} (mg g ⁻¹)
Co-adsorption	Adsorbent BHP-char	q _{e,exp} (mg g ⁻¹) 36.16	Pseudo k ₁ (1 min ⁻¹) 0.0799	R ² 0.9852	r model q _{e,cal} (mg g ⁻¹) 28.59	Pseudo-seco k ₂ (g mg ⁻¹ min ⁻¹) 0.0064	R ² 0.9919	model q _{e,cal} (mg g ⁻¹) 37.88
Co-adsorption TC	Adsorbent BHP-char NH4C1-BHP-char/Fe3O4	q _{e,exp} (mg g ⁻¹) 36.16 48.55	Pseudo k ₁ (1 min ⁻¹) 0.0799 0.0871	R ² 0.9852 0.9798	r model q _{e,cal} (mg g ⁻¹) 28.59 29.67	Pseudo-seco k ₂ (g mg ⁻¹ min ⁻¹) 0.0064 0.0057	R ² 0.9919 0.9990	model q _{e,cal} (mg g ⁻¹) 37.88 51.55
Co-adsorption TC	Adsorbent BHP-char NH4Cl-BHP-char/Fe3O4 BHP-char	q _{e,exp} (mg g ⁻¹) 36.16 48.55 39.51	Pseudo k ₁ (1 min ⁻¹) 0.0799 0.0871 0.0928	R ² 0.9852 0.9798 0.9806	r model q _{e,cal} (mg g ⁻¹) 28.59 29.67 18.48	Pseudo-seco k ₂ (g mg ⁻¹ min ⁻¹) 0.0064 0.0057 0.0226	R ² 0.9919 0.9990 0.9970	model q _{e,cal} (mg g ⁻¹) 37.88 51.55 39.06

Table S3. Parameters of pseudo-first-order and pseudo-second-order models for the adsorption of TC and Zn(II) on BHP-char and NH₄Cl-BHP-char/Fe₃O₄.

			Langmuir		Freundlich			
Single-component adsorption	Adsorbent	q_L	K _L	R ²	K _F	n	R ²	
		(mg g ⁻¹)	(L mg ⁻¹)					
ТС	BHP-char	39.68	0.3007	0.9913	6.68	1.7265	0.9746	
IC	NH ₄ Cl-BHP-char/Fe ₃ O ₄	106.38	0.8174	0.9951	35.59	1.3841	0.9777	
72+	BHP-char	109.89	0.1033	0.9966	8.06	1.3972	0.9771	
Σn^{2}	NH ₄ Cl-BHP-char/Fe ₃ O ₄	151.52	0.4342	0.9977	27.04	1.5230	0.9540	
			Temkin			D-R		
Single-component adsorption	Adsorbent	K _T	Temkin β_T	R^2	q _D	D-R E	R^2	
Single-component adsorption	Adsorbent	К _т (L g ⁻¹)	Temkin β_T (kJ mol ⁻¹)	R ²	q _D (mg g ⁻¹)	D-R E (kJ mol ⁻¹)	R ²	
Single-component adsorption	Adsorbent BHP-char	К _т (L g ⁻¹) 10.03	Temkin β _T (kJ mol ⁻¹) 0.4385	R ² 0.9169	q _D (mg g ⁻¹) 16.92	D-R E (kJ mol ⁻¹) 2.9090	R ² 0.8413	
Single-component adsorption TC	Adsorbent BHP-char NH4Cl-BHP-char/Fe ₃ O ₄	К _т (L g ⁻¹) 10.03 38.47	Temkin β _T (kJ mol ⁻¹) 0.4385 0.1839	R ² 0.9169 0.8710	q _D (mg g ⁻¹) 16.92 41.16	D-R E (kJ mol ⁻¹) 2.9090 3.9724	R ² 0.8413 0.9148	
Single-component adsorption TC	Adsorbent BHP-char NH4Cl-BHP-char/Fe3O4 BHP-char	K _T (L g ⁻¹) 10.03 38.47 5.03	Temkin β _T (kJ mol ⁻¹) 0.4385 0.1839 0.1670	R ² 0.9169 0.8710 0.9032	q _D (mg g ⁻¹) 16.92 41.16 35.38	D-R E (kJ mol ⁻¹) 2.9090 3.9724 2.2854	R ² 0.8413 0.9148 0.7770	

Table S4. Parameters of isotherms for the adsorption of TC and Zn(II) on BHP-char and NH₄Cl-BHP-char/Fe₃O₄.

			Langmuir			Freundlich	
Co-adsorption	Adsorbent	$q_{\rm L}$	K _L	R ²	K _F	n	R^2
		(mg g ⁻¹)	(L mg ⁻¹)				
TC	BHP-char	76.92	0.1783	0.8938	9.38	1.5202	0.9989
IC	NH ₄ Cl-BHP-char/Fe ₃ O ₄	126.58	1.1791	0.9448	61.14	1.3307	0.9948
7 2+	BHP-char	192.31	0.081	0.7871	12.62	1.347	0.9986
Zn^{2}	NH ₄ Cl-BHP-char/Fe ₃ O ₄	357.14	1.077	0.8957	216.35	1.157	0.9943
			Temkin			D-R	
Co-adsorption	Adsorbent	K _T	β_{T}	P ²	$q_{\rm D}$	Е	P ²
		(L g ⁻¹)	(kJ mol ⁻¹)	K	(mg g ⁻¹)	(kJ mol ⁻¹)	K
TO	BHP-char	10.68	0.2858	0.7772	19.17	5.9133	0.7445
IC	NH ₄ Cl-BHP-char/Fe ₃ O ₄	70.99	0.1745	0.8038	45.92	4.703	0.9231
7 ?+	BHP-char	7.99	0.1288	0.7459	38.83	3.902	0.7035
Zn ²	NH ₄ Cl-BHP-char/Fe ₃ O ₄	128.59	0.08468	0.7880	108.20	3.841	0.9341

Single-component adsorption	Adsorbent	∆G° (KJ mol ⁻¹)				∆H° - (KImolti)	ΔS^{o}	R ²	
uusoipiion		293K	298K	303K	308K	313K	(KJ IIIOI)	(KJ mol ⁻¹)	
TO	BHP-char	-1.346	-2.588	-3.830	-5.072	-6.314	71.472	0.2484	0.9939
IC	NH ₄ Cl-BHP-char/Fe ₃ O ₄	-6.519	-8.773	-11.027	-13.281	-15.535	125.633	0.4508	0.9902
7)+	BHP-char	-2.948	-4.748	-6.548	8.348	-10.148	102.586	0.3600	0.9991
Σn^{2}	NH ₄ Cl-BHP-char/Fe ₃ O ₄	-10.049	-12.075	-14.100	-16.126	-18.151	108.706	0.4051	0.9936
Co-adsorption	Adsorbent	ΔG° (KJ mol ⁻¹)					ΔH ^o	ΔS^{o}	R ²
		293K	298K	303K	308K	313K	- (KJ mol ⁻¹)	(KJ mol ⁻¹)	
TC	BHP-char	-2.344	-4.199	-6.055	-7.910	-9.766	106.444	0.3711	0.9986
IC	NH ₄ Cl-BHP-char/Fe ₃ O ₄	-8.167	-10.301	-12.434	-14.568	-16.701	116.920	0.4267	0.9989
72+	BHP-char	-3.209	-5.191	-7.173	-9.155	-11.137	112.996	0.3964	0.9947
Zn ²⁺	NH ₄ Cl-BHP-char/Fe ₃ O ₄	-12.299	-13.858	-15.417	-16.976	-18.535	79.105	0.3118	0.9961

 $Table \ S5. \ Parameters \ of \ thermodynamic \ for \ the \ adsorption \ of \ TC \ and \ Zn(II) \ on \ BHP-char \ and \ NH_4Cl-BHP-char/Fe_3O_4.$

		Film diffusion model				
Adsorbate	Adsorbent	k _F (min ⁻¹)	А	R ²		
TC	BHP-char	0.0328	-0.2908	0.9725		
(Single-component adsorption)	NH ₄ Cl-BHP-char/Fe ₃ O ₄	0.0298	-0.1342	0.9824		
Zn^{2+}	BHP-char	0.0734	-0.4123	0.9769		
(Single-component adsorption)	NH ₄ Cl-BHP-char/Fe ₃ O ₄	0.0691	-0.5462	0.9761		
TC	BHP-char	0.0779	-0.2350	0.9831		
(Co-adsorption)	NH ₄ Cl-BHP-char/Fe ₃ O ₄	0.0644	-0.0257	0.9692		
Zn^{2+}	BHP-char	0.0928	-0.7599	0.9778		
(Co-adsorption)	NH ₄ Cl-BHP-char/Fe ₃ O ₄	0.0965	-0.5068	0.9925		

Table S6. Constants of film diffusion model for TC and Zn(II) on BHP and NH₄Cl-BHP-char/Fe₃O₄.

Table S7. Constants of Intra-particle diffusion model for TC and Zn(II) on BHP and NH_4Cl -BHP-char/Fe₃O₄.

			Intra	-particle d	iffusion model		
Adsorbate	Adsorbent	k _{s1} (mg g min ⁻¹)	C ₁ (mg g ⁻¹)	R ²	k _{s2} (mg g min ⁻¹)	C ₂ (mg g ⁻¹)	R ²
TC	BHP-char	4.743	0.209	0.9971	1.388	14.514	0.9998
(Single-component adsorption)	NH ₄ Cl-BHP-char/Fe ₃ O ₄	8.977	-5.610	0.9566	3.745	9.867	0.9987
Zn^{2+}	BHP-char	8.768	1.919	0.9785	2.141	23.114	0.9525
(Single-component adsorption)	NH ₄ Cl-BHP-char/Fe ₃ O ₄	7.959	12.063	0.9960	3.080	28.392	0.9604
TC	BHP-char	7.678	0.042	0.9977	1.844	22.965	0.9301
(Co-adsorption)	NH ₄ Cl-BHP-char/Fe ₃ O ₄	8.519	-2.061	0.9815	5.656	7.927	0.9724
Zn^{2+}	BHP-char	5.802	15.536	0.9796	1.558	29.681	0.9407
(Co-adsorption)	NH ₄ Cl-BHP-char/Fe ₃ O ₄	7.892	13.812	0.9846	4.288	24.733	0.9670

Text 1

Dertermination of Zn(II)

FAAS determination conditions: Wavelength of 213.86 nm, hollow cathode lamp current of 15 mA, slit of 2.7/1.8 mm, airflow rate of 10 L min⁻¹, and acetylene flow rate of 2.5 L min⁻¹.

Preparation of 50 mg L⁻¹ standard solution of Zn(II): Transfer 5 mL of 1,000 mg L⁻¹ stock solutions of Zn(II) to a 100 mL volumetric flask, and dilute with ultrapure water to a specific volume.

Preparation of Zn(II) working standard solution: Transfer 0, 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0 mL of 50 mg L⁻¹ standard solution of Zn(II) to a 50 mL volumetric flask, respectively, and dilute with 1% nitric acid to volume. Zn(II) working standard solution concentrations were 0, 1.0, 2.0, 4.0, 6.0. 8.0 and 10.0 mg L⁻¹, respectively.

The linear relationship between absorbance and concentration is

y = 0.0567x + 0.438 (R²=0.9995)

Determination of TC

Preparation of TC working standard solution: Transfer 0, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5 and 2.0 mL of 1,000 mg L⁻¹ stock solutions of TC to a 100 mL volumetric flask, respectively, and dilute with ultrapure water to a specific volume. TC working standard solution concentrations were 0, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0 and 20.0 mg L⁻¹, respectively.

The linear relationship between absorbance and concentration is

y = 0.0354x + 0.2814 (R²=0.9992)

Text 2

Pseudo-first order model	$\ln(q_e - q_t) = \ln q_e - k_1 t$
Pseudo-second order model	$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$
Film diffusion model	$\ln(1-\frac{q_t}{q_e}) = -k_F t + A$
Intra-particle diffusion model	$q_t = k_s t^{1/2} + I$

where $q_e(mg g^{-1})$ and $q_t(mg g^{-1})$ are the amounts of TC or Zn(II) adsorbed on the biochar at equilibrium and at time t (min), respectively, $k_1(1 \text{ min}^{-1})$ is the rate constant of pseudo-first order adsorption. $k_2(g \text{ mg}^{-1} \text{ min}^{-1})$ is the rate constant of pseudo-second order adsorption. $k_F(1 \text{ min}^{-1})$ and A are liquid film diffusion constants, where k_s (mg g⁻¹ min^{-0.5}) is the rate constant of intraparticle diffusion model, and I (mg g⁻¹) is a constant describing the thickness of boundary layer.

Text 3

- Langmuir isotherm $\frac{C_e}{q_e} = \frac{1}{q_L K_L} + \frac{C_e}{q_L}$
- Freundlich isotherm $\ln q_e = \ln K_F + \frac{1}{n} \ln C_e$

Temkin isotherm
$$q_e = \frac{RT}{\beta_T} \ln(K_T C_e)$$

D-R isotherm
$$\ln q_e = \ln q_D - (\frac{RT}{\sqrt{2E}})^2 \times (\ln(1 + \frac{1}{C_e}))^2$$

where $q_L (mg g^{-1})$ is the Langmuir maximum adsorption capacity of TC or Zn(II), $K_L (L mg^{-1})$ is the Langmuir constant termed as apparent energy of adsorption, $K_F ((mg g^{-1}) (L mg^{-1})^{1/n})$ is the Freundlich constants related to adsorption capacity, n is a measure of adsorption linearity, $\beta_T (J mol^{-1})$ is the Temkin constant related to heat of adsorption, $K_T (L g^{-1})$ is the Temkin isotherm constant, R (8.314 J mol^{-1} K^{-1}) is the gas constant, T (K) is the absolute temperature, $q_D (mg g^{-1})$ is the D-R maximum adsorption capacity of TC or Zn(II), and E (J mol^{-1}) is mean free energy of adsorption per molecule of the adsorbate.

Text 4

$$K_c = q_e/C$$

 $\Delta G^{\circ} = -RT \ln K_{c}$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
$$\ln K_{c} = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}$$

where K_c (ml g⁻¹) is the thermodynamic equilibrium constant.