Electronic Supplementary Information

Electrochemical studies of high voltage Na₄Co₃(PO₄)₂P₂O₇-MWCNT composite through selected stable electrolyte

P. Ramesh Kumar^a, R. Essehli^b H. B. Yahia^a, R. Amin^{b*}, I. Belharouak^b

^a Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar.

^b Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Figure S1. Thermal gravimetric analysis curve for the Na₄Co₃(PO₄)₂P₂O₇-MWCNT composite.

Figure S2. Raman spectra for the $Na_4Co_3(PO_4)_2P_2O_7$ -MWCNT composite.

Figure S3. First charging curve for the $Na_4Co_3(PO_4)_2P_2O_7$ -MWCNT composite in 1M $NaClO_4$ in PC+ 5% FEC electrolyte.

Figure S4. a) Cycleability results and b) Charge –discharge curves for the $Na_4Co_3(PO_4)_2P_2O_7$ -MWCNT composite at 55°C.

Figure S5. Rate capability results from 1 C to 20 C

Figure S6. Rate capability results from 1 C to 20 C for the $Na_4Co_3(PO_4)_2P_2O_7$ -MWCNT composite at room temperature.

Figure S7: Equivalent electrical circuit model for fitting impedance data.

Figure S8. Electrochemical Impedance spectra for the $Na_4Co_3(PO_4)_2P_2O_7$ -MWCNT composite electrode during the a) charging and b) discharging states at 55 °C.