Thermal stabilities and conformational behaviors of isocyanurates and cyclotrimerization energies of isocyanates : a computational study

Tadafumi Uchimaru,^a Shogo Yamane,^a Junji Mizukado,^a and Seiji Tsuzuki^b ^aResearch Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi, 1-1-1, Tsukuba, Ibaraki 305-8565 Japan ^bResearch Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, Umezono, 1-1-1, Tsukuba, Ibaraki 305-8568 Japan

Supplementary Information

- Estimation of the cyclotrimerization energy of methyl isocyanate by using thermochemical data known in the literature
- Table S1 Calculated values for CH₃–NCO bond dissociation enthalpy at 0 K and the estimates for the enthalpy of formation of methyl isocyanate at 298 K
- Table S2. Results of composite method calculations for the enthalpy values (in au) for CH₃-NCO molecule and NCO and CH₃ radicals at 0 K and 298 K
- Table S3 Extrapolation of the ROCCSD(T) single point energies of CH₃NCO molecule and NCO and CH₃ radicals to the basis set limit: estimation of the CH₃–NCO bond dissociation enthalpy
- Table S4 Extrapolation of the UCCSD(T) single point energies of CH₃NCO molecule and NCO and CH₃ radicals to the basis set limit: estimation of the CH₃–NCO bond dissociation enthalpy
- Estimation of the cyclotrimerization energy of methyl isocyanate at the CCSD(T) basis set limit value
- Table S5 Single point energies of trimethyl isocyanurate and methyl isocyanate calculated with the aug-cc-pVXZ (X = D, T, Q) basis set: Estimate for the cyclotrimerization energy at the CCSD(T) basis set limit
- Table S6 Calculated energy differences between the extreme conformers of tri-*n*-alkyl isocyanurates
- NBO analysis for the resonance stabilization energies in the isocyanate and isocyanurate molecules
- Table S7 Resonance stabilization energies in isocyanate and isocyanurate molecules
- Figure S1 Structures of tri-*n*-hexyl and tri-*n*-octyl isocyanurate
- Figure S2 Optimized structures of isocyanate molecules
- The Cartesian coordinates of the optimized isocyanurates
- The Cartesian coordinates of the optimized isocyanates

Estimation of the cyclotrimerization energy of methyl isocyanate by using thermochemical data known in the literature

We made estimation of the cyclotrimerization energy of methyl isocyanate by using thermochemical data known in the literature. Imamura et al. reported enthalpy of formation of trimethyl isocyanurate ΔH_f at 298 K as -141.1 ± 0.4 kcal/mol (-590.5 ± 1.6 kJ/mol).¹ Although no literature thermochemical data is available for methyl isocyanate, the enthalpies of formation of NCO and CH₃ radicals have been reported. The reported values of ΔH_f at 0 K values of NCO and CH₃ radicals are 30.5 kcal/mol and 35.9 ± 0.1 kcal/mol (150.3 ± 0.4 kJ/mol), respectively.^{2,3} We employed high level *ab initio* methods for computing the bond dissociation energy (BDE) of CH₃–NCO. The *ab initio* derived BDE value and the literature values of the enthalpies of formation (ΔH_f) of the radicals enabled us to calculate the enthalpy of methyl isocyanate. Furthermore, by referring to the literature value for the enthalpy of formation of trimethyl isocyanurate, the cyclotrimerization enthalpy value of methyl isocyanate was obtained.

The composite *ab initio* procedures, such as CBS-APNO,⁴ G3,⁵ G4MP2,⁶and G4⁷ methods, were employed for the computations of the CH₃–NCO BDE and the corresponding estimates of enthalpy formation of methyl isocyanate (See Tables S1 and S2). Recent extensive benchmark results show that these composite procedures provide highly accurate thermochemical values for molecules⁸ and radicals.⁹

The CH₃-NCO BDE was also evaluated by applying the CCSD(T) energy assessments using the correlation consistent basis sets (aug-cc-pVXZ, X = D, T, Q, 5).¹⁰ The single point energies of CH₃NCO, NCO, and CH₃ are collected in Tables S3 and S4. Table S3 shows the ROCCSD(T) calculated values, whereas Table S4 shows UCCSD(T) calculated values. By using the two-point extrapolation schemes, we obtained the basis set limit values of the electronic energies at the CCSD(T) level, *i. e.* $E_{CCSDT (limit)}$. For the HF energy extrapolation, the procedure prescribed by Halkier et al.^{7,11} was employed. Namely,

$$E_{HF(limit)}(X, X+1) = \frac{E_{HF(X+1)} - E_{HF(X)}exp^{[i0]}(-\alpha)}{1 - exp^{[i0]}(-\alpha)}$$

where $\alpha = 1.63$. Meanwhile, the correlation energies at the CCSD(T) level were extrapolated according to the procedure reported by Helgaker et al.¹² Namely,

$$E_{CCSDT \ cor.(limit)}(X, X+1) = \frac{(X+1)^3 E_{CCSDT \ cor.(X+1)} - X^3 E_{CCSDT \ cor.(X)}}{(X+1)^3 - X^3}$$

The values of $E_{\text{CCSDT (limit)}}$ were obtained with the following equation.

$$E_{CCSDT(limit)} = E_{HF(limit)}(X, X + 1) + E_{CCSDT cor.(limit)}(X, X + 1)$$

The single point energies calculated with the basis sets of aug-cc-pVQZ and aug-cc-pV5Z were employed for the extrapolation to the basis set limit. That is, X = 4 for the above equations in

the present case. The same procedure was applied for the results shown in Tables S3 and S4. The $E_{\text{CCSDT (limit)}}$ values obtained from Tables S3 and S4 are almost identical. Table S1 shows the result obtained from the extrapolation of ROCCSD(T) single point energies given in Table S3.

These computational methods suggested us CH₃–NCO BDE values at 0 K ranging from 88 and 91 kcal/mol (Table S1). Based on these values, the enthalpy of formation ΔH_f of methyl isocyanate at 298 K was estimated to be in the range from -24 to -26 kcal/mol (Table S1). Referring to the enthalpy of formation of trimethyl isocyanurate, the cyclotrimerization enthalpy of methyl isocyanate was estimated to be between -62 and -70 kcal/mol.

Computational method	BDE _{0 K} ^a	$\Delta H_{f~298~\mathrm{K}}{}^{\mathrm{a,b}}$
CBS-APNO	89.7	-25.3
G3	87.9	-23.5
G4MP2	88.2	-23.8
G4	88.5	-24.1
Basis set limit value at the CCSD(T) level ^c	90.9	-26.4

Table S1 Calculated values for CH₃–NCO bond dissociation enthalpy at 0 K and the estimates for the enthalpy of formation of methyl isocyanate at 298 K

^a See the text.

^b According to the procedure prescribed by Curtiss et al.,¹³ the values of $\Delta H_{f 298K}$ were derived from those of $\Delta H_{f 0K}$.

^c See Tables S3.

Computational method	Temperarure	CH ₃ –NCO	NCO	CH ₃
CBS-APNO	0 K	-207.931424	-167.984792	-39.803682
	298 K	-207.925719	-167.981124	-39.799526
G3	0 K	-207.854151	-167.920789	-39.793292
	298 K	-207.848367	-167.917060	-39.789046
G4MP2	0 K	-207.728638	-167.826662	-39.761454
	298 K	-207.722949	-167.822973	-39.757408
G4	0 K	-207.891750	-167.950718	-39.799954
	298 K	-207.886061	-167.947028	-39.795909

Table S2. Results of composite method calculations for the enthalpy values (in au) for CH_3 -NCO molecule and NCO and CH_3 radicals at 0 K and 298 K

Table S3 Extrapolation of the ROCCSD(T) single point energies of CH_3NCO molecule and NCO and CH_3 radicals to the basis set limit: estimation of the CH_3 -NCO bond dissociation enthalpy^a

		CH ₃ NCO	NCO	CH ₃	BDE _e (kcal/mol)	BDE ₀ (kcal/mol)
ZPE		0.050099	0.011132	0.029594		
Basis set	Computational level					
aug-cc-pVDZ	HF	-206.818612	-167.145021	-39.561662		
	CCSDT	-207.496886	-167.627183	-39.724163	91.328	
	$E_{\rm corr}$	-0.678274	-0.482162	-0.162501		
aug-cc-pVTZ	HF	-206.869569	-167.183126	-39.573498		
	CCSDT	-207.676651	-167.761606	-39.763629	95.015	
	$E_{\rm corr}$	-0.807082	-0.578480	-0.190131		
aug-cc-pVQZ	HF	-206.882487	-167.193589	-39.575897		
	CCSDT	-207.729380	-167.802743	-39.773318	96.209	
	$E_{\rm corr}$	-0.846893	-0.609154	-0.197421		
aug-cc-pV5Z	HF	-206.885366	-167.195849	-39.576516		
	CCSDT	-207.745594	-167.815679	-39.776129	96.502	
	$E_{\rm corr}$	-0.860228	-0.619830	-0.199613		
HF _{limit}		-206.886068	-167.196400	-39.576667		
$E_{\rm corr limit}$		-0.874219	-0.631031	-0.201913		
$E_{\text{CCSDT limit}}$		-207.760286	-167.827431	-39.778580	96.810	
E_0		-207.710187	-167.816299	-39.748986		90.928

^a Geometry optimizations were carried out at the MP2/6-311+G(2df,p) level. The zero point energies were computed using scale factor of 0.9777 prescribed by Merrick et al.¹⁴

		CHANCO	NCO	СН	BDE _e	BDE_0
		CHI3NCO	NCO	C11 ₃	(kcal/mol)	(kcal/mol)
ZPE		0.050099	0.011132	0.029594		
Basis set	Computational level					
aug-cc-pVDZ	HF	-206.818612	-167.153878	-39.565801		
	CCSDT	-207.496886	-167.627020	-39.724178	91.421	
	$E_{\rm corr}$	-0.678274	-0.473142	-0.158377		
aug-cc-pVTZ	HF	-206.869569	-167.192303	-39.578016		
	CCSDT	-207.676651	-167.761405	-39.763648	95.129	
	$E_{\rm corr}$	-0.807082	-0.569102	-0.185632		
aug-cc-pVQZ	HF	-206.882487	-167.202825	-39.580445		
	CCSDT	-207.729380	-167.802541	-39.773339	96.323	
	$E_{\rm corr}$	-0.846893	-0.599716	-0.192894		
aug-cc-pV5Z	HF	-206.885366	-167.205097	-39.581070		
	CCSDT	-207.745594	-167.815431	-39.776144	96.648	
	$E_{\rm corr}$	-0.860228	-0.610334	-0.195074		
HF _{limit}		-206.886068	-167.205651	-39.581222		
$E_{\rm corr limit}$		-0.874219	-0.621474	-0.197361		
$E_{\text{CCSDT limit}}$		-207.760286	-167.827125	-39.778584	96.999	
E ₀		-207.710187	-167.815993	-39.748990		91.118

Table S4 Extrapolation of the UCCSD(T) single point energies of CH₃NCO molecule and NCO and CH₃ radicals to the basis set limit: estimation of the CH₃–NCO bond dissociation enthalpy^a

^a Geometry optimizations were carried out at the MP2/6-311+G(2df,p) level. The zero point energies were computed using scale factor of 0.9777 prescribed by Merrick et al.¹⁴

Estimation of the cyclotrimerization energy of methyl isocyanate at the CCSD(T) basis set limit value

By using two-point extrapolation schemes, the HF energies and the MP2 correlation energies calculated with the basis sets of the aug-cc-pVTZ and aug-cc-pVQZ were extrapolated. For the HF energy extrapolation, we employed the procedure developed by Halkier et al.^{7,11} The basis set limit energy value at the HF level $E_{\text{HF(limit)}}(3, 4)$ is given by the following equation:

$$E_{HF(limit)}(3,4) = \frac{E_{HF(4)} - E_{HF(3)}exp[-\alpha]}{1 - exp-\alpha}$$

where $\alpha = 1.63$. Meanwhile, the MP2 correlation energies were extrapolated using the procedure prescribed by Helgaker et al.¹² The MP2 correlation energy at the basis set limit E_{MP2} _{cor.(limit)} is given by the following equation:

$$E_{MP2 \ cor. \ (limit)} = \frac{4^3 E_{MP2 \ cor. (4)} - 3^3 E_{MP2 \ cor. (3)}}{4^3 - 3^3}$$

In addition, we considered values of $\Delta_{CCSDT}(2)$ and γ . The former is the difference between the MP2 and CCSD(T) energies calculated with the basis set of the aug-cc-pVDZ. The latter is the ratio of the MP2 correlation energy calculated with the aug-cc-pVDZ relative to the MP2 correlation energy at the basis set limit $E_{MP2 \text{ cor.(limit)}}$. Namely,

$$\Delta_{CCSDT}(2) = E_{CCSDT(2)} - E_{MP2(2)}$$
$$\gamma = \frac{E_{MP2 \text{ cor. (2)}}}{E_{MP2 \text{ cor. (limit)}}}$$

The following equation shows our estimated CCSD(T) energy value at the basis set limit, $E_{\text{CCSDT(limit)}}$.

$$E_{CCSDT(limit)} = E_{HF(limit)}(3, 4) + E_{MP2 \ cor.(limit)} + \frac{\Delta_{CCSDT}(2)}{\gamma}$$

Through the above described procedures, we obtained an estimate for the electronic energy change upon cyclotrimerization of methyl isocyanate. Our estimated CCSD(T) energy value at the basis set limit is -71.6 kcal/mol.

Basis set (X)	Trimer (Isocyanurate)	Monomer (Isocyanate)	Cyclotrimerization energy (kcal/mol))
		HF	(
D	-620.555658	-206.819741	-60.5
Т	-620.701172	-206.871144	-55.1
Q	-620.739444	-206.884130	-54.6
		MP2	
D	-622.474844	-207.453549	-71.7
Т	-623.008363	-207.633158	-68.3
Q	-623.181816	-207.691365	-67.6
		CCSD(T)	
D	-622.607359	-207.495947	-75.0
Т			
CCSD(T)limit			-71.6
Enthalpy correcti	on		5.1
ΔH			-66.4

Table S5 Single point energies of trimethyl isocyanurate and methyl isocyanate calculated with the aug-cc-pVXZ (X = D, T, Q) basis set: Estimate for the cyclotrimerization energy at the CCSD(T) basis set limit

			Cor	nputational lev	vel		
R	B3LYP ^b	HF^{b}	B3LYP- GD3 ^b	B3LYP- GD3BJ ^b	MP2 ^b	ONIOM(1) ^c	ONIOM(2) ^d
$\frac{\text{Me}}{(C_s - C_{3h})}$	0.04	0.04	0.05	0.04	0.05	0.05	0.05
Et $(C_s - C_{3v})$	-0.06	-0.04	0.07	0.04	0.07	0.07	0.07
$n - \Pr(C_s - C_3)$	-3.78	-4.59	0.07	-0.05	0.52	0.05	0.53
$n - Bu (C_s - C_3)$	-4.43	-5.33	0.63	0.47	1.24	0.06	1.25
$n - \text{Hex}$ $(C_{s} - C_{3})$	-10.02	-12.75	5.57	4.92	5.08	5.61	5.12
$n - \operatorname{Oct}$ $(C_s - C_3)$	-11.16		9.53	8.63		9.56	

Table S6 Calculated energy differences between the extreme conformers of tri-*n*-alkyl isocyanurates^a

^a The energy differences between the conformers calculated with taking the BSSEs into account are given in kcal/mol. Positive values indicate that the conformers possessing the C_3 axis are lower in energy than the C_s isomers. The geometries of the conformers were optimized at the B3LYP-GD3/cc-pVTZ level. The BSSE-uncorrected energy differences between the conformers are given in Table 3, but almost identical results were obtained whether or not the BSSEs were taken into account.

^b The cc-pVTZ basis set was utilized.

^c ONIOM(CCSD(T)/cc-pVTZ:B3LYP-GD3/cc-pVTZ)

^d ONIOM(CCSD(T)/cc-pVTZ:MP2/cc-pVTZ)

NBO analysis for the resonance stabilization energies in the isocyanate and isocyanurate molecules

The NBO analysis was applied to examine the differences in the resonance orbital interactions between the trialkyl isocyanates and the phenyl substituted analogue. The NBO program version 6.0¹⁵ implemented in the Gaussian 09 was employed. There have been reported criticisms that the second order perturbation theory in the NBO analysis tends to overestimate the resonance energies.^{16,17} However, the NBO analysis would be helpful in obtaining at least qualitatively correct pictures or trends.

Table S7 shows the calculated resonance stabilization energies due to the orbital interactions between the substituents and the NCO moiety in the isocyanate molecules. In addition, those between the substituents and the isocyanate ring in the isocyanurate molecules are also shown in Table S7. The resonance stabilization energy was found to be considerably smaller for triphenyl isocyanurate than for phenyl isocyanate. Namely, for the phenyl derivative, the resonance stabilization energy will be reduced upon the cyclotrimerization. For the alkyl-substituted derivatives, the degree of the change in the resonance stabilization upon cyclotrimerization was indicated to be relatively smaller than for the phenyl derivative. These differences between phenyl and alkyl derivatives are inferred as the main cause of the difference in trend between these two types of derivatives seen in Figure 4b.

R		$R \rightarrow \text{NCO/ICN}^{\text{b}}$	$R \leftarrow \text{NCO/ICN}^{c}$	$R \cong \text{NCO/ICN}^{d}$
	R-N=C=O	16.0	23.0	38.4
Me	isocyanurate	16.2	18.9	35.0
	Δ^{e}	0.2	-4.1	-3.4
	R-N=C=O	17.2	25.1	41.6
<i>n</i> -Oct	isocyanurate	18.7	22.6	41.0
	Δ^{e}	1.5	-2.5	-0.6
Ph	R-N=C=O	20.8	38.9	58.0
	isocyanurate	20.7	29.5	49.7
	Δ^{e}	-0.1	-9.4	-8.3

Table S7 Resonance stabilization energies in isocyanate and isocyanurate molecules^a

^a The resonance stabilization energies were evaluated with the second order perturbation theory.
 The abbreviation of ICN stands for the isocyanurate ring. Energy values are given in kcal/mol.
 ^b The stabilization energies due to the resonance interactions between the bonding orbitals in the

substituent and the anti-bonding orbitals of NCO moiety or isocyanurate ring.

^c The stabilization energies due to the resonance interactions between the anti-bonding orbitals in the substituent and the bonding orbitals of NCO moiety or isocyanurate ring.

^d The stabilization energies due to the resonance interactions between the orbitals in the substituent and those of NCO moiety or isocyanurate ring.

^e The difference between the isocyanate and isocyanurate molecules.

Figure S1 Structures of tri-*n*-hexyl and tri-*n*-octyl isocyanurate

Ph-NCO (C_s)

Figure 2S Optimized structures of isocyanate molecules

References

- A. Imamura, K. Takahashi, S. Murata and M. Sakiyama, J. Chem. Thermodynamics, 1989, 21, 237-246.
- 2 Y. Ji, P. Bobadova-Parvanova, C. Larson, P. C. Samartis, K. Morokuma, J. J-M. Lin, T.-T. Ching, C. Chaudhuri, S.-H. Lee and A. M. Wodtke, *J. Chem. Phys.*, 2006, **124**, 241106.
- 3 E. A. Fogleman, H. Koizumi, J. P. Kercher, B. Sztáray and T. Baer, J. Phys. Chem. A, 2004, **108**, 5288-5294.
- 4 J. W. Ochterski, G. A. Petersson and J. A. Montgomery Jr., *J. Chem. Phys.*, 1996, **104**, 2598-2619.
- 5 L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolve and J. A. Pople, *J. Chem. Phys.*, 1998, **109**, 7764-7776.
- 6 L. A. Curtiss, P. C. Redfern and K. Raghavachari, J. Chem. Phys., 2007, 127, 124105.
- 7 L. A. Curtiss, P. C. Redfern and K. Raghavachari, J. Chem. Phys., 2007, 126, 084108.
- 8 J. M. Simmie and K. P. Somers, J. Phys. Chem. A, 2015, 119, 7235-7246.
- 9 K. P. Somers and J. M. Simmie, J. Phys. Chem. A, 2015, 119, 8922-8933.
- 10 a) T. H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007-1023; b) R. A. Kendall and T. H. Dunning Jr., J. Chem. Phys., 1992, 96, 6796-6806.
- A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper and J. Olsen, *Chem. Phys. Lett.*, 1999, 302, 437-446.
- 12 T. Helgaker, W. Klopper, H. Koch and J. Noga, J. Chem. Phys., 1997, 106, 9639-9646.
- 13 L. A. Curtiss, K. Raghavachari, P. C. Redfern and J. A. Pople, J. Chem. Phys., 1997, 106, 1063-1079.
- 14 J. P. Merrick, D. Moran and L. Radom, J. Chem. Phys. A, 2007, 111, 11683-11700.
- 15 E. D. Glendening, C. R. Landis and F. Weinhold, J. Comput. Chem., 2013, 34, 1429-1437.
- 16 S. Karthikeyan, R. Dedlak and P. Hobza, J. Phys. Chem. A, 2011, 115, 9422-9428.
- 17 A. J. Stone, J. Phys. Chem. A, 2017, 121, 1531-1534.

The Cartesian coordinates of the optimized isocyanurates

Trin	neth	yl iso	cyanurate (C ₃	h) (RB3L)	YP) = -624.312105)20 12	2	6	0	-0.040611	2.819927	0.000000
1	6	0	-1.229136	0.711057	0.000000	13	3	1	0	3.036334	-1.092669	0.882416
2	7	0	0.000000	1.356441	0.000000	14	4	1	0	2.271793	-2.441199	0.000000
3	6	0	1.230361	0.708935	0.000000	15	5	1	0	3.036334	-1.092669	-0.882416
4	7	0	1.174712	-0.678221	0.000000	10	6	1	0	-3.027722	-1.105344	-0.882437
5	6	0	-0.001225	-1.419991	0.000000	17	7	1	0	-2.259920	-2.452136	0.000000
6	7	0	-1.174712	-0.678221	0.000000	18	8	1	0	-3.027722	-1.105344	0.882437
7	8	0	-2.269391	1.332034	0.000000	19	9	1	0	-0.569858	3.171560	-0.882563
8	8	0	2.288271	1.299333	0.000000	20	0	1	0	-0.569858	3.171560	0.882563
9	8	0	-0.018880	-2.631367	0.000000	21	1	1	0	0.980464	3.180934	0.000000
10	6	0	-2.428207	-1.439769	0.000000							
11	6	0	-0.032773	2.822773	0.000000	Tri	ietł	ıyl is	ocy	anurate (C _{3v})	E(RB3L	AYP) = -742.315946725
12	6	0	2.460980	-1.383004	0.000000	1	1	7	0	-1.175428	0.678634	-0.384166
13	1	0	-2.471544	-2.073635	0.882525	2	2	6	0	0.000000	1.418165	-0.351957
14	1	0	-3.247410	-0.731471	0.000000	3	3	7	0	1.175428	0.678634	-0.384166
15	1	0	-2.471544	-2.073635	-0.882525	2	4	6	0	1.228167	-0.709082	-0.351957
16	1	0	-0.560049	3.177238	0.882525	4	5	7	0	0.000000	-1.357268	-0.384166
17	1	0	0.990232	3.178075	0.000000	(6	6	0	-1.228167	-0.709082	-0.351957
18	1	0	-0.560049	3.177238	-0.882525	2	7	8	0	0.000000	2.629876	-0.300934
19	1	0	3.031593	-1.103602	-0.882525	٤	8	8	0	2.277540	-1.314938	-0.300934
20	1	0	3.031593	-1.103602	0.882525	9	9	8	0	-2.277540	-1.314938	-0.300934
21	1	0	2.257178	-2.446604	0.000000	10	0	6	0	-2.903434	1.676298	1.097765
						11	1	6	0	-2.452811	1.416131	-0.333168
Trin	neth	yl iso	cyanurate (<i>C</i> s)) E(RB3	LYP) = -624.31202	7966 12	2	6	0	2.903434	1.676298	1.097765
1	6	0	0.005570	-1.432099	0.000000	13	3	6	0	2.452811	1.416131	-0.333168
2	7	0	-1.169263	-0.687796	0.000000	14	4	6	0	0.000000	-3.352597	1.097765
3	6	0	-1.222255	0.699122	0.000000	15	5	6	0	0.000000	-2.832262	-0.333168
4	7	0	0.000000	1.354345	0.000000	10	6	1	0	-3.847765	2.221508	1.096564
5	6	0	1.230181	0.708856	0.000000	17	7	1	0	-3.053296	0.736785	1.628755
6	7	0	1.176373	-0.679477	0.000000	18	8	1	0	-2.164723	2.275840	1.628755
7	8	0	0.009608	-2.643422	0.000000	19	9	1	0	-2.296109	2.348619	-0.866643
8	8	0	-2.273706	1.301211	0.000000	20	0	1	0	-3.182018	0.814180	-0.866643
9	8	0	2.287453	1.300372	0.000000	21	1	1	0	3.847765	2.221508	1.096564
10	6	0	2.467718	-1.376359	0.000000	22	2	1	0	2.164723	2.275840	1.628755
11	6	0	-2.458345	-1.387694	0.000000	23	3	1	0	3.053296	0.736785	1.628755

24	1	0	3.182018	0.814180	-0.866643		28	1	0	1.24	6674	-2.6	47627 -2.2	19010
25	1	0	2.296109	2.348619	-0.866643		29	1	0	-1.198	3595	-2.13	32775 -2.28	31751
26	1	0	0.000000	-4.443017	1.096564		30	1	0	-0.862	2668	-0.63	35320 -3.16	57514
27	1	0	0.888573	-3.012625	1.628755									
28	1	0	-0.888573	-3.012625	1.628755		Tri-n	-pr	opyl i	isocyan	urate (C	3)	E(RB3LYP)	-860.309214480
29	1	0	-0.885909	-3.162798	-0.866643		1		7	0	0.093	606	1.354646	-0.757531
30	1	0	0.885909	-3.162798	-0.866643		2		6	0	-1.176	283	0.792819	-0.755438
							3		7	0	-1.219	961	-0.596257	-0.757531
Trie	hyli	isocy	anurate (C _s)	E(RB3	LYP) = -742.	315835805	4		6	0	-0.098	460	-1.415101	-0.755438
1	7	0	-0.307644	-0.629233	1.175154		5		7	0	1.126	354	-0.758388	-0.757531
2	6	0	0.046153	0.712978	1.228512		6		6	0	1.274	743	0.622282	-0.755438
3	7	0	0.237966	1.332361	0.000000		7		8	0	-2.177	090	1.477504	-0.749012
4	6	0	0.046153	0.712978	-1.228512		8		8	0	-0.191	011	-2.624168	-0.749012
5	7	0	-0.307644	-0.629233	-1.175154		9		8	0	2.368	101	1.146663	-0.749012
6	6	0	-0.438089	-1.358250	0.000000		10		6	0	0.934	452	2.858222	1.748689
7	8	0	0.185410	1.303335	2.278738		11		6	0	-0.060	050	3.373293	0.709526
8	8	0	0.185410	1.303335	-2.278738		12		6	0	0.178	334	2.828124	-0.698337
9	8	0	-0.666814	-2.549233	0.000000		13		6	0	-2.942	519	-0.619851	1.748689
10	6	0	0.851523	-1.935647	2.942887		14		6	0	-2.891	333	-1.738651	0.709526
11	6	0	-0.465911	-1.350166	2.453168		15		6	0	-2.538	394	-1.259620	-0.698337
12	6	0	-0.623757	3.662680	0.000000		16		6	0	2.008	066	-2.238370	1.748689
13	6	0	0.603930	2.762159	0.000000		17		6	0	2.951	382	-1.634642	0.709526
14	6	0	0.851523	-1.935647	-2.942887		18		6	0	2.360	060	-1.568504	-0.698337
15	6	0	-0.465911	-1.350166	-2.453168		19		1	0	0.742	651	3.308033	2.723067
16	1	0	0.697315	-2.459061	3.886973		20		1	0	0.858	114	1.776087	1.869043
17	1	0	1.246674	-2.647627	2.219010		21		1	0	1.962	012	3.081907	1.461533
18	1	0	1.584112	-1.145993	3.107161		22		1	0	0.000	000	4.462578	0.645404
19	1	0	-0.862668	-0.635320	3.167514		23		1	0	-1.081	252	3.134284	1.009015
20	1	0	-1.198595	-2.132775	2.281751		24		1	0	1.169	469	3.091225	-1.054284
21	1	0	-0.316918	4.709059	0.000000		25		1	0	-0.567	294	3.218911	-1.385612
22	1	0	-1.229079	3.485130	-0.888392		26		1	0	-3.236	166	-1.010862	2.723067
23	1	0	-1.229079	3.485130	0.888392		27		1	0	-1.967	194	-0.144895	1.869043
24	1	0	1.208450	2.929988	0.886040		28		1	0	-3.650	016	0.158199	1.461533
25	1	0	1.208450	2.929988	-0.886040		29		1	0	-3.864	706	-2.231289	0.645404
26	1	0	0.697315	-2.459061	-3.886973		30		1	0	-2.173	744	-2.503534	1.009015
27	1	0	1.584112	-1.145993	-3.107161		31		1	0	-3.261	814	-0.532822	-1.054284

32	1	0	-2.504012	-2.100747	-1.385612	27	1	0	-0.579696	5.381234	-0.882299
33	1	0	2.493516	-2.297171	2.723067	28	1	0	-0.579696	5.381234	0.882299
34	1	0	1.109079	-1.631192	1.869043	29	1	0	1.113135	3.517348	0.880834
35	1	0	1.688004	-3.240106	1.461533	30	1	0	1.113135	3.517348	-0.880834
36	1	0	3.864706	-2.231289	0.645404	31	1	0	-1.290851	2.884283	-0.886391
37	1	0	3.254996	-0.630751	1.009015	32	1	0	-1.290851	2.884283	0.886391
38	1	0	2.092345	-2.558402	-1.054284	33	1	0	-1.387165	-3.163499	-4.617662
39	1	0	3.071306	-1.118164	-1.385612	34	1	0	-0.127092	-2.008806	-5.046748
						35	1	0	0.286024	-3.480216	-4.164653
Tri- <i>n</i>	-propyl	isocyaı	urate (C _s)	E(RB3LYP) =	-860.309048593	36	1	0	-1.039096	-2.664069	-2.185408
1	7	0	0.402885	-0.596426	1.175127	37	1	0	-1.451765	-1.195157	-3.066340
2	6	0	-0.018901	0.725962	1.228503	38	1	0	0.953795	-0.575844	-3.170698
3	7	0	-0.241114	1.335018	0.000000	39	1	0	1.368586	-2.053961	-2.284465
4	6	0	-0.018901	0.725962	-1.228503						
5	7	0	0.402885	-0.596426	-1.175127	Tri-n	<i>i-</i> butyl i	socyanu	rate (C ₃)	Е(РВЗЛҰП) =	-978.301982362
6	6	0	0.571968	-1.317412	0.000000	1	7	0	0.093361	1.354448	-1.286632
7	8	0	-0.188716	1.308307	2.278813	2	6	0	-1.176078	0.792590	-1.282171
8	8	0	-0.188716	1.308307	-2.278813	3	7	0	-1.219667	-0.596372	-1.286632
9	8	0	0.863739	-2.494633	0.000000	4	6	0	-0.098364	-1.414808	-1.282171
10	6	0	-0.466314	-2.695971	4.269123	5	7	0	1.126306	-0.758077	-1.286632
11	6	0	-0.687353	-1.965434	2.946931	6	6	0	1.274442	0.622218	-1.282171
12	6	0	0.596704	-1.307650	2.451279	7	8	0	-2.177029	1.477079	-1.268300
13	6	0	0.025657	5.164278	0.000000	8	8	0	-0.190674	-2.623902	-1.268300
14	6	0	0.498441	3.712652	0.000000	9	8	0	2.367702	1.146822	-1.268300
15	6	0	-0.678664	2.742370	0.000000	10	6	0	0.625426	3.322826	2.679441
16	6	0	-0.466314	-2.695971	-4.269123	11	6	0	0.898722	2.770727	1.281962
17	6	0	-0.687353	-1.965434	-2.946931	12	6	0	-0.071474	3.325157	0.238193
18	6	0	0.596704	-1.307650	-2.451279	13	6	0	0.178439	2.825453	-1.184325
19	1	0	-1.387165	-3.163499	4.617662	14	6	0	-3.190365	-1.119778	2.679441
20	1	0	0.286024	-3.480216	4.164653	15	6	0	-2.848881	-0.607047	1.281962
						16					
21	1	0	-0.127092	-2.008806	5.046748	10	6	0	-2.843933	-1.724477	0.238193
21 22	1 1	0 0	-0.127092 -1.451765	-2.008806 -1.195157	5.046748 3.066340	16	6 6	0 0	-2.843933 -2.536134	-1.724477 -1.258194	0.238193 -1.184325
21 22 23	1 1 1	0 0 0	-0.127092 -1.451765 -1.039096	-2.008806 -1.195157 -2.664069	5.046748 3.066340 2.185408	16	6 6 6	0 0 0	-2.843933 -2.536134 2.564938	-1.724477 -1.258194 -2.203048	0.238193 -1.184325 2.679441

20 6

21 6 0

0

2.915407 -1.600680

2.357695 -1.567260 -1.184325

0.238193

25 1

26

0 0.953795 -0.575844

1 0 0.871149 5.852148

3.170698

0.000000

22	1	0	1.318076	2.909543	3.413604	8	8	0	0.260275	1.315440	-2.278800
23	1	0	0.728448	4.409706	2.699736	9	8	0	0.260275	1.315440	2.278800
24	1	0	-0.388917	3.082446	3.005020	10	6	0	1.133679	-3.538188	4.771826
25	1	0	0.822763	1.679982	1.307510	11	6	0	-0.034511	-2.693881	4.266079
26	1	0	1.925349	2.992109	0.982248	12	6	0	0.274786	-1.995424	2.943129
27	1	0	0.000000	4.416366	0.215855	13	6	0	-0.900120	-1.157195	2.451292
28	1	0	-1.098762	3.086645	0.520261	14	6	0	1.133679	-3.538188	-4.771826
29	1	0	1.172111	3.098137	-1.525068	15	6	0	-0.034511	-2.693881	-4.266079
30	1	0	-0.561564	3.237753	-1.864944	16	6	0	0.274786	-1.995424	-2.943129
31	1	0	-3.178777	-0.313284	3.413604	17	6	0	-0.900120	-1.157195	-2.451292
32	1	0	-4.183141	-1.573999	2.699736	18	6	0	-0.415084	6.310599	-0.000000
33	1	0	-2.475018	-1.878035	3.005020	19	6	0	0.597863	5.167250	-0.000000
34	1	0	-1.866289	-0.127457	1.307510	20	6	0	-0.067979	3.792339	-0.000000
35	1	0	-3.553917	0.171347	0.982248	21	6	0	0.955411	2.662083	-0.000000
36	1	0	-3.824685	-2.208183	0.215855	22	1	0	0.892531	-4.027628	5.716166
37	1	0	-2.123732	-2.494878	0.520261	23	1	0	1.396055	-4.314978	4.050837
38	1	0	-3.269120	-0.533991	-1.525068	24	1	0	2.020967	-2.922486	4.932132
39	1	0	-2.523195	-2.105205	-1.864944	25	1	0	-0.297118	-1.943575	5.017675
40	1	0	1.860700	-2.596259	3.413604	26	1	0	-0.917907	-3.327156	4.142010
41	1	0	3.454694	-2.835707	2.699736	27	1	0	0.521068	-2.738844	2.181196
42	1	0	2.863935	-1.204411	3.005020	28	1	0	1.145747	-1.346430	3.062712
43	1	0	1.043526	-1.552525	1.307510	29	1	0	-1.145298	-0.381085	3.170921
44	1	0	1.628568	-3.163456	0.982248	30	1	0	-1.773254	-1.781845	2.284645
45	1	0	3.824685	-2.208183	0.215855	31	1	0	0.892531	-4.027628	-5.716166
46	1	0	3.222494	-0.591766	0.520261	32	1	0	2.020967	-2.922486	-4.932132
47	1	0	2.097010	-2.564146	-1.525068	33	1	0	1.396055	-4.314978	-4.050837
48	1	0	3.084759	-1.132548	-1.864944	34	1	0	-0.917907	-3.327156	-4.142010
						35	1	0	-0.297118	-1.943575	-5.017675
Tri- <i>n-</i> b	outyl is	ocyanı	urate (C _s) (RB3LYP) =	-978.300893292	36	1	0	1.145747	-1.346430	-3.062712
1	7	0	-0.605857	-0.481105	1.175030	37	1	0	0.521068	-2.738844	-2.181196
2	6	0	-0.878388	-1.169629	0.000000	38	1	0	-1.773254	-1.781845	-2.284645
3	7	0	-0.605857	-0.481105	-1.175030	39	1	0	-1.145298	-0.381085	-3.170921
4	6	0	0.006562	0.764372	-1.228407	40	1	0	0.080310	7.282232	-0.000000
5	7	0	0.316692	1.333668	-0.000000	41	1	0	-1.057989	6.263816	-0.881214
6	6	0	0.006562	0.764372	1.228407	42	1	0	-1.057989	6.263816	0.881214
7	8	0	-1.339009	-2.291705	0.000000	43	1	0	1.248089	5.253438	0.875566

44	1	0	1.248089	5.253438	-0.875566	30	1	0	-2.361253	3.561098	-0.685742
45	1	0	-0.706160	3.690593	-0.881136	31	1	0	-2.663772	1.837820	-0.588023
46	1	0	-0.706160	3.690593	0.881136	32	1	0	-0.285146	1.468098	0.136426
47	1	0	1.581672	2.712230	0.886342	33	1	0	0.000000	3.189250	0.080865
48	1	0	1.581672	2.712230	-0.886342	34	1	0	-1.743209	3.515818	1.859634
						35	1	0	-2.079662	1.799297	1.843495
Tri- <i>n-</i> ł	iexyl is	ocyanu	irate (C3)	E(RB3LYP) =	-1214.29375648	36	1	0	0.297955	1.347544	2.533561
1	7	0	-0.677613	1.177286	-2.448513	37	1	0	0.589460	3.066385	2.616718
2	6	0	0.711666	1.226158	-2.440486	38	1	0	0.093663	2.145790	4.889008
3	7	0	1.358366	-0.001813	-2.448513	39	1	0	-1.177738	3.271614	4.412458
4	6	0	0.706051	-1.229400	-2.440486	40	1	0	-1.456551	1.534030	4.317591
5	7	0	-0.680753	-1.175473	-2.448513	41	1	0	3.175594	-0.976062	-2.507760
6	6	0	-1.417717	0.003242	-2.440486	42	1	0	3.244458	0.748673	-2.906467
7	8	0	1.327796	2.270246	-2.412321	43	1	0	4.264628	0.264356	-0.685742
8	8	0	1.302193	-2.285028	-2.412321	44	1	0	2.923485	1.387984	-0.588023
9	8	0	-2.629988	0.014782	-2.412321	45	1	0	1.413983	-0.487105	0.136426
10	6	0	-1.419091	2.436570	-2.231421	46	1	0	2.761972	-1.594625	0.080865
11	6	0	-1.887925	2.580194	-0.780589	47	1	0	3.916392	-0.248245	1.859634
12	6	0	-0.774964	2.439165	0.258333	48	1	0	2.598068	0.901391	1.843495
13	6	0	-1.283553	2.535962	1.695080	49	1	0	1.018030	-0.931809	2.533561
14	6	0	-0.187722	2.305625	2.735085	50	1	0	2.360837	-2.043680	2.616718
15	6	0	-0.708872	2.315816	4.170066	51	1	0	1.811478	-1.154009	4.889008
16	6	0	2.819677	0.010683	-2.231421	52	1	0	3.422170	-0.615856	4.412458
17	6	0	3.178476	0.344894	-0.780589	53	1	0	2.056785	0.494396	4.317591
18	6	0	2.499861	-0.548444	0.258333	54	1	0	-2.433092	-2.262114	-2.507760
19	6	0	2.837984	-0.156391	1.695080	55	1	0	-0.973859	-3.184119	-2.906467
20	6	0	2.090591	-0.990240	2.735085	56	1	0	-1.903375	-3.825454	-0.685742
21	6	0	2.359992	-0.544007	4.170066	57	1	0	-0.259713	-3.225805	-0.588023
22	6	0	-1.400587	-2.447254	-2.231421	58	1	0	-1.128837	-0.980993	0.136426
23	6	0	-1.290551	-2.925088	-0.780589	59	1	0	-2.761972	-1.594625	0.080865
24	6	0	-1.724896	-1.890721	0.258333	60	1	0	-2.173183	-3.267572	1.859634
25	6	0	-1.554431	-2.379571	1.695080	61	1	0	-0.518406	-2.700688	1.843495
26	6	0	-1.902869	-1.315385	2.735085	62	1	0	-1.315985	-0.415736	2.533561
27	6	0	-1.651120	-1.771809	4.170066	63	1	0	-2.950297	-1.022705	2.616718
28	1	0	-0.742502	3.238176	-2.507760	64	1	0	-1.905140	-0.991781	4.889008
29	1	0	-2.270599	2.435446	-2.906467	65	1	0	-2.244432	-2.655758	4.412458

66	I	0	-0.600233	-2.028426	4.317591	34	1	0	0.691242	6.401006	0.8/4993
						35	1	0	0.691242	6.401006	-0.874993
Tri- <i>n</i>	-hexyl is	socyanu	ırate (C _s)	E(RB3LYP) =	-1214.28453811	36	1	0	-1.401906	7.775443	-0.874468
1	7	0	-0.240161	1.402358	0.000000	37	1	0	-1.401906	7.775443	0.874468
2	6	0	0.119572	0.863022	1.228371	38	1	0	-0.417380	9.901311	0.000000
3	7	0	0.840874	-0.322717	1.175019	39	1	0	0.806901	8.987983	0.880841
4	6	0	1.173700	-0.984149	-0.000000	40	1	0	0.806901	8.987983	-0.880841
5	7	0	0.840874	-0.322717	-1.175019	41	1	0	2.119116	-1.514400	2.285064
6	6	0	0.119572	0.863022	-1.228371	42	1	0	1.367796	-0.175832	3.171405
7	8	0	-0.182459	1.389185	2.278801	43	1	0	-0.827269	-1.341541	3.060749
8	8	0	1.732575	-2.060719	-0.000000	44	1	0	-0.080248	-2.671838	2.178626
9	8	0	-0.182459	1.389185	-2.278801	45	1	0	1.405594	-3.131616	4.141182
10	6	0	-0.994917	2.668523	0.000000	46	1	0	0.662894	-1.809229	5.017934
11	6	0	-0.076391	3.885527	0.000000	47	1	0	-1.550762	-2.975022	4.899088
12	6	0	-0.863170	5.194406	0.000000	48	1	0	-0.808822	-4.295905	4.023139
13	6	0	0.033537	6.431526	0.000000	49	1	0	0.686011	-4.752846	5.979413
14	6	0	-0.744805	7.746818	0.000000	50	1	0	-0.055513	-3.432794	6.854833
15	6	0	0.161414	8.976647	0.000000	51	1	0	-1.057605	-5.615695	7.550584
16	6	0	1.193533	-0.970394	2.451288	52	1	0	-2.279088	-4.614741	6.766387
17	6	0	0.097824	-1.910542	2.941679	53	1	0	-1.532170	-5.944419	5.884563
18	6	0	0.468462	-2.578864	4.263842	54	1	0	1.367796	-0.175832	-3.171405
19	6	0	-0.613068	-3.527565	4.778436	55	1	0	2.119116	-1.514400	-2.285064
20	6	0	-0.251396	-4.201791	6.101468	56	1	0	-0.080248	-2.671838	-2.178626
21	6	0	-1.339466	-5.147801	6.606322	57	1	0	-0.827269	-1.341541	-3.060749
22	6	0	1.193533	-0.970394	-2.451288	58	1	0	0.662894	-1.809229	-5.017934
23	6	0	0.097824	-1.910542	-2.941679	59	1	0	1.405594	-3.131616	-4.141182
24	6	0	0.468462	-2.578864	-4.263842	60	1	0	-0.808822	-4.295905	-4.023139
25	6	0	-0.613068	-3.527565	-4.778436	61	1	0	-1.550762	-2.975022	-4.899088
26	6	0	-0.251396	-4.201791	-6.101468	62	1	0	-0.055513	-3.432794	-6.854833
27	6	0	-1.339466	-5.147801	-6.606322	63	1	0	0.686011	-4.752846	-5.979413
28	1	0	-1.623133	2.662584	-0.886323	64	1	0	-1.057605	-5.615695	-7.550584
29	1	0	-1.623133	2.662584	0.886323	65	1	0	-1.532170	-5.944419	-5.884563
30	1	0	0.568054	3.840435	0.881101	66	1	0	-2.279088	-4.614741	-6.766387
31	1	0	0.568054	3.840435	-0.881101						
32	1	0	-1.519453	5.223654	-0.875926	Tri- <i>n-</i> o	ctyl iso	cyanu	rate (C ₃)	E(RB3LYP) =	-1450.28356961
33	1	0	-1.519453	5.223654	0.875926	1	7	0	0.063304	1.356432	3.578662

2	6	0	-1.194049	0.764067	3.569901	38	1	0	-0.602704	3.777148	-3.150282
3	7	0	-1.206357	-0.623393	3.578662	39	1	0	0.633414	2.541783	-3.167276
4	6	0	-0.064677	-1.416111	3.569901	40	1	0	-2.371301	-2.322435	3.658819
5	7	0	1.143053	-0.733039	3.578662	41	1	0	-3.217469	-0.822230	4.072992
6	6	0	1.258726	0.652043	3.569901	42	1	0	-3.937076	-1.734220	1.867280
7	8	0	-2.220199	1.409905	3.543363	43	1	0	-3.282587	-0.112306	1.756999
8	8	0	-0.110914	-2.627701	3.543363	44	1	0	-1.097463	-1.037575	0.961011
9	8	0	2.331113	1.217796	3.543363	45	1	0	-1.732211	-2.661082	1.072579
10	6	0	0.146068	2.818183	3.384639	46	1	0	-3.463943	-2.091826	-0.644732
11	6	0	0.508672	3.186857	1.944054	47	1	0	-2.878853	-0.443499	-0.696399
12	6	0	-0.396582	2.560050	0.882816	48	1	0	-0.667450	-1.230460	-1.523183
13	6	0	0.000000	2.959226	-0.536644	49	1	0	-1.211850	-2.889665	-1.454749
14	6	0	-0.835780	2.278944	-1.619022	50	1	0	-2.969754	-2.410531	-3.150282
15	6	0	-0.441129	2.700520	-3.033416	51	1	0	-2.517956	-0.722339	-3.167276
16	6	0	-2.513652	-1.282592	3.384639	52	1	0	3.196938	-0.892390	3.658819
17	6	0	-3.014235	-1.152905	1.944054	53	1	0	2.320807	-2.375295	4.072992
18	6	0	-2.018777	-1.623475	0.882816	54	1	0	3.470416	-2.542498	1.867280
19	6	0	-2.562765	-1.479613	-0.536644	55	1	0	1.738554	-2.786651	1.756999
20	6	0	-1.555734	-1.863278	-1.619022	56	1	0	1.447297	-0.431643	0.961011
21	6	0	-2.118155	-1.732289	-3.033416	57	1	0	3.170670	-0.169597	1.072579
22	6	0	2.367584	-1.535590	3.384639	58	1	0	3.543546	-1.953950	-0.644732
23	6	0	2.505563	-2.033952	1.944054	59	1	0	1.823508	-2.271410	-0.696399
24	6	0	2.415359	-0.936575	0.882816	60	1	0	1.399334	0.037201	-1.523183
25	6	0	2.562765	-1.479613	-0.536644	61	1	0	3.108449	0.395340	-1.454749
26	6	0	2.391513	-0.415666	-1.619022	62	1	0	3.572458	-1.366617	-3.150282
27	6	0	2.559284	-0.968231	-3.033416	63	1	0	1.884542	-1.819445	-3.167276
28	1	0	-0.825637	3.214824	3.658819	64	6	0	-1.197700	1.951239	-4.128454
29	1	0	0.896663	3.197525	4.072992	65	1	0	-1.051938	0.878037	-3.989623
30	1	0	0.466659	4.276717	1.867280	66	1	0	-2.271556	2.126074	-4.012446
31	1	0	1.544034	2.898957	1.756999	67	6	0	-0.759277	2.341365	-5.538071
32	1	0	-0.349835	1.469218	0.961011	68	1	0	0.303187	2.137309	-5.685487
33	1	0	-1.438459	2.830679	1.072579	69	1	0	-1.311312	1.785519	-6.297292
34	1	0	-0.079603	4.045776	-0.644732	70	1	0	-0.919397	3.405933	-5.720572
35	1	0	1.055345	2.714910	-0.696399	71	6	0	-1.090972	-2.012858	-4.128454
36	1	0	-0.731884	1.193259	-1.523183	72	1	0	-0.234434	-1.350023	-3.989623
37	1	0	-1.896599	2.494326	-1.454749	73	1	0	-0.705456	-3.030262	-4.012446

74	6	0	-1.648043	-1.828236	-5.538071	24	6	0	-0.910746	5.263810	0.000000
75	1	0	-2.002558	-0.806087	-5.685487	25	6	0	-0.074164	6.542496	0.000000
76	1	0	-0.890649	-2.028389	-6.297292	26	6	0	-0.915394	7.817963	0.000000
77	1	0	-2.489926	-2.499187	-5.720572	27	6	0	-0.080095	9.097294	0.000000
78	6	0	2.288672	0.061619	-4.128454	28	1	0	2.388662	-1.295158	2.285292
79	1	0	1.286371	0.471986	-3.989623	29	1	0	1.574304	0.006023	3.171629
80	1	0	2.977012	0.904188	-4.012446	30	1	0	-0.562879	-1.262527	3.059929
81	6	0	2.407320	-0.513129	-5.538071	31	1	0	0.246711	-2.555654	2.177761
82	1	0	2.201961	0.242869	-6.297292	32	1	0	1.751746	-2.945222	4.140854
83	1	0	3.409323	-0.906745	-5.720572	33	1	0	0.947070	-1.659702	5.017610
84	1	0	1.699370	-1.331223	-5.685487	34	1	0	-1.208720	-2.928110	4.896918
						35	1	0	-0.404959	-4.212164	4.020909
Tri- <i>n-</i> 0	octyl is	ocyanu	rate (C _s)	E(RB3LYP) =	-1450.26787905	36	1	0	1.110117	-4.599554	5.979008
1	7	0	1.055576	-0.165353	1.175021	37	1	0	0.306616	-3.315617	6.854896
2	6	0	1.419715	-0.810074	0.000000	38	1	0	-1.851615	-4.584531	6.734926
3	7	0	1.055576	-0.165353	-1.175021	39	1	0	-1.048299	-5.868279	5.859088
4	6	0	0.278256	0.984435	-1.228361	40	1	0	1.574304	0.006023	-3.171629
5	7	0	-0.106877	1.505934	0.000000	41	1	0	2.388662	-1.295158	-2.285292
6	6	0	0.278256	0.984435	1.228361	42	1	0	0.246711	-2.555654	-2.177761
7	8	0	2.029500	-1.858658	0.000000	43	1	0	-0.562879	-1.262527	-3.059929
8	8	0	-0.048705	1.495486	-2.278800	44	1	0	0.947070	-1.659702	-5.017610
9	8	0	-0.048705	1.495486	2.278800	45	1	0	1.751746	-2.945222	-4.140854
10	6	0	1.438225	-0.795777	2.451308	46	1	0	-0.404959	-4.212164	-4.020909
11	6	0	0.388215	-1.786980	2.941088	47	1	0	-1.208720	-2.928110	-4.896918
12	6	0	0.789514	-2.437388	4.263197	48	1	0	0.306616	-3.315617	-6.854896
13	6	0	-0.246375	-3.436313	4.776998	49	1	0	1.110117	-4.599554	-5.979008
14	6	0	0.147031	-4.092380	6.099602	50	1	0	-1.048299	-5.868279	-5.859088
15	6	0	-0.888122	-5.091332	6.614344	51	1	0	-1.851615	-4.584531	-6.734926
16	6	0	1.438225	-0.795777	-2.451308	52	1	0	-1.548590	2.698510	-0.886322
17	6	0	0.388215	-1.786980	-2.941088	53	1	0	-1.548590	2.698510	0.886322
18	6	0	0.789514	-2.437388	-4.263197	54	1	0	0.583664	3.979965	0.881098
19	6	0	-0.246375	-3.436313	-4.776998	55	1	0	0.583664	3.979965	-0.881098
20	6	0	0.147031	-4.092380	-6.099602	56	1	0	-1.567697	5.261661	-0.875889
21	6	0	-0.888122	-5.091332	-6.614344	57	1	0	-1.567697	5.261661	0.875889
22	6	0	-0.921377	2.734531	0.000000	58	1	0	0.584012	6.542686	0.874957
23	6	0	-0.062217	3.994127	0.000000	59	1	0	0.584012	6.542686	-0.874957

60	1	0	-1.574166	7.816349	-0.874829	10	6	0	2.815791	-0.503784	0.000000
61	1	0	-1.574166	7.816349	0.874829	11	6	0	3.482838	0.000000	1.277850
62	1	0	0.579144	9.099257	0.874701	12	6	0	3.482838	0.000000	-1.277850
63	1	0	0.579144	9.099257	-0.874701	13	6	0	-1.844185	-2.186655	0.000000
64	6	0	-0.496833	-5.749124	7.937371	14	6	0	-1.741419	-3.016226	1.277850
65	1	0	0.465592	-6.255490	7.815920	15	6	0	-1.741419	-3.016226	-1.277850
66	1	0	-0.337310	-4.972292	8.691360	16	6	0	-0.971606	2.690439	0.000000
67	6	0	-1.539347	-6.745479	8.441673	17	6	0	-1.741419	3.016226	1.277850
68	1	0	-1.694323	-7.549952	7.719471	18	6	0	-1.741419	3.016226	-1.277850
69	1	0	-1.236507	-7.200215	9.385962	19	1	0	2.860086	-1.587257	0.000000
70	1	0	-2.503151	-6.257274	8.601372	20	1	0	2.975395	-0.395598	2.158383
71	6	0	-0.496833	-5.749124	-7.937371	21	1	0	4.514793	-0.351899	1.300218
72	1	0	-0.337310	-4.972292	-8.691360	22	1	0	3.484819	1.085446	1.328181
73	1	0	0.465592	-6.255490	-7.815920	23	1	0	2.975395	-0.395598	-2.158383
74	6	0	-1.539347	-6.745479	-8.441673	24	1	0	4.514793	-0.351899	-1.300218
75	1	0	-2.503151	-6.257274	-8.601372	25	1	0	3.484819	1.085446	-1.328181
76	1	0	-1.236507	-7.200215	-9.385962	26	1	0	-2.804648	-1.683279	0.000000
77	1	0	-1.694323	-7.549952	-7.719471	27	1	0	-1.830295	-2.378969	2.158383
78	6	0	-0.919492	10.374637	0.000000	28	1	0	-2.562150	-3.733976	1.300218
79	1	0	-1.577520	10.372002	-0.874308	29	1	0	-0.802385	-3.560665	1.328181
80	1	0	-1.577520	10.372002	0.874308	30	1	0	-1.830295	-2.378969	-2.158383
81	6	0	-0.073466	11.646692	0.000000	31	1	0	-2.562150	-3.733976	-1.300218
82	1	0	-0.695639	12.542840	0.000000	32	1	0	-0.802385	-3.560665	-1.328181
83	1	0	0.570928	11.688916	0.880761	33	1	0	-0.055438	3.270536	0.000000
84	1	0	0.570928	11.688916	-0.880761	34	1	0	-1.145100	2.774567	2.158383
						35	1	0	-1.952643	4.085875	1.300218
Tri- <i>i</i> -p	ropyli	isocyan	urate (C _{3h}) I	E(RB3LYP) =	-860.305801320	36	1	0	-2.682433	2.475218	1.328181
1	7	0	1.344802	-0.226346	0.000000	37	1	0	-1.145100	2.774567	-2.158383
2	6	0	0.489763	-1.330156	0.000000	38	1	0	-1.952643	4.085875	-1.300218
3	7	0	-0.868422	-1.051459	0.000000	39	1	0	-2.682433	2.475218	-1.328181
4	6	0	-1.396830	0.240930	0.000000						
5	7	0	-0.476379	1.277805	0.000000	Tri- <i>i-</i> pı	opyl is	socyan	urate (C _s)	E(RB3LYP) =	-860.305695683
6	6	0	0.907067	1.089225	0.000000	1	7	0	1.491644	-0.071281	0.000000
7	8	0	0.910495	-2.468478	0.000000	2	6	0	0.837782	1.152811	0.000000
8	8	0	-2.593013	0.445727	0.000000	3	7	0	-0.556284	1.105571	0.000000
9	8	0	1.682517	2.022751	0.000000	4	6	0	-1.288247	-0.074240	0.000000

5	7	0	-0.554562	-1.254585	0.000000	Tri- <i>t</i> -bu	utyl iso	ocyanu	rate(C _s)	E(RB3LYP) =	-978.263023744
6	6	0	0.837480	-1.302461	0.000000	1	7	0	0.029129	-0.657451	1.171900
7	8	0	1.446248	2.202838	0.000000	2	6	0	0.619624	-1.167042	0.000000
8	8	0	-2.501810	-0.075581	0.000000	3	7	0	0.029129	-0.657451	-1.171900
9	8	0	1.445444	-2.352741	0.000000	4	6	0	-0.248519	0.704342	-1.209139
10	6	0	2.989241	-0.094227	0.000000	5	7	0	-0.011235	1.376847	0.000000
11	6	0	3.560857	0.515658	1.277852	6	6	0	-0.248519	0.704342	1.209139
12	6	0	3.560857	0.515658	-1.277852	7	8	0	1.507817	-1.979980	0.000000
13	6	0	-1.283804	2.413300	0.000000	8	8	0	-0.621831	1.276945	-2.210703
14	6	0	-2.097988	2.603944	1.277766	9	8	0	-0.621831	1.276945	2.210703
15	6	0	-2.097988	2.603944	-1.277766	10	6	0	-0.114117	-1.504067	2.429058
16	6	0	-1.283689	-2.562398	0.000000	11	6	0	0.954269	-1.082638	3.441313
17	6	0	-2.097988	-2.752414	-1.277774	12	6	0	0.034969	-2.997250	2.101741
18	6	0	-2.097988	-2.752414	1.277774	13	6	0	-1.535945	-1.313835	2.989507
19	1	0	3.217520	-1.154165	0.000000	14	6	0	-0.114117	-1.504067	-2.429058
20	1	0	3.127613	0.040049	2.158433	15	6	0	0.034969	-2.997250	-2.101741
21	1	0	4.637443	0.343255	1.300383	16	6	0	0.954269	-1.082638	-3.441313
22	1	0	3.379321	1.585788	1.327940	17	6	0	-1.535945	-1.313835	-2.989507
23	1	0	3.127613	0.040049	-2.158433	18	6	0	0.170380	2.889008	0.000000
24	1	0	4.637443	0.343255	-1.300383	19	6	0	-1.201641	3.565089	0.000000
25	1	0	3.379321	1.585788	-1.327940	20	6	0	0.996058	3.308539	-1.230665
26	1	0	-0.479463	3.140614	0.000000	21	6	0	0.996058	3.308539	1.230665
27	1	0	-1.470054	2.464712	2.158458	22	1	0	0.839838	-0.036347	3.713799
28	1	0	-2.485873	3.622907	1.301130	23	1	0	0.862396	-1.687041	4.344459
29	1	0	-2.934675	1.912413	1.326830	24	1	0	1.948988	-1.239113	3.024363
30	1	0	-1.470054	2.464712	-2.158458	25	1	0	-0.638320	-3.298393	1.298416
31	1	0	-2.485873	3.622907	-1.301130	26	1	0	-0.244190	-3.555888	2.994108
32	1	0	-2.934675	1.912413	-1.326830	27	1	0	1.045904	-3.270031	1.823992
33	1	0	-0.480248	-3.290505	0.000000	28	1	0	-1.665922	-1.989538	3.834664
34	1	0	-1.470164	-2.612974	-2.158508	29	1	0	-1.717046	-0.300461	3.324455
35	1	0	-2.485561	-3.771493	-1.301307	30	1	0	-2.277850	-1.573951	2.233225
36	1	0	-2.934848	-2.061143	-1.326601	31	1	0	-0.638320	-3.298393	-1.298416
37	1	0	-1.470164	-2.612974	2.158508	32	1	0	-0.244190	-3.555888	-2.994108
38	1	0	-2.485561	-3.771493	1.301307	33	1	0	1.045904	-3.270031	-1.823992
39	1	0	-2.934848	-2.061143	1.326601	34	1	0	0.839838	-0.036347	-3.713799
						35	1	0	0.862396	-1.687041	-4.344459

36	1	0	1.948988	-1.239113	-3.024363	22	1	0	2.159623	3.222890	-0.391797
37	1	0	-1.665922	-1.989538	-3.834664	23	1	0	1.102471	4.394334	-1.176723
38	1	0	-2.277850	-1.573951	-2.233225	24	1	0	1.297747	2.787497	-1.871438
39	1	0	-1.717046	-0.300461	-3.324455	25	1	0	-2.159623	3.222890	-0.391797
40	1	0	-1.761944	3.279451	0.888511	26	1	0	-1.102471	4.394334	-1.176723
41	1	0	-1.080254	4.649162	0.000000	27	1	0	-1.297747	2.787497	-1.871438
42	1	0	-1.761944	3.279451	-0.888511	28	1	0	0.000000	4.596981	1.194202
43	1	0	1.912732	2.720382	-1.298203	29	1	0	0.888486	3.203353	1.823615
44	1	0	1.279131	4.352637	-1.104406	30	1	0	-0.888486	3.203353	1.823615
45	1	0	0.449842	3.209555	-2.159589	31	1	0	-3.870917	0.258843	-0.391797
46	1	0	1.279131	4.352637	1.104406	32	1	0	-4.356840	-1.242399	-1.176723
47	1	0	0.449842	3.209555	2.159589	33	1	0	-3.062917	-0.269866	-1.871438
48	1	0	1.912732	2.720382	1.298203	34	1	0	-1.711293	-3.481734	-0.391797
						35	1	0	-3.254369	-3.151935	-1.176723
Tri- <i>t</i> -l	butyl is	ocyanu	rate(C _{3v})	E(RB3LYP) =	-978.261636690	36	1	0	-1.765169	-2.517631	-1.871438
1	7	0	0.000000	1.367030	-0.013250	37	1	0	-3.981102	-2.298491	1.194202
2	6	0	-1.204820	0.695603	0.227657	38	1	0	-3.218428	-0.832225	1.823615
3	7	0	-1.183882	-0.683515	-0.013250	39	1	0	-2.329942	-2.371128	1.823615
4	6	0	-0.000000	-1.391206	0.227657	40	1	0	3.218428	-0.832225	1.823615
5	7	0	1.183882	-0.683515	-0.013250	41	1	0	3.981102	-2.298491	1.194202
6	6	0	1.204820	0.695603	0.227657	42	1	0	2.329942	-2.371128	1.823615
7	8	0	-2.192745	1.265982	0.632393	43	1	0	1.765169	-2.517631	-1.871438
8	8	0	-0.000000	-2.531964	0.632393	44	1	0	3.254369	-3.151935	-1.176723
9	8	0	2.192745	1.265982	0.632393	45	1	0	1.711293	-3.481734	-0.391797
10	6	0	0.000000	2.888752	-0.123609	46	1	0	4.356840	-1.242399	-1.176723
11	6	0	1.230247	3.340566	-0.933213	47	1	0	3.870917	0.258843	-0.391797
12	6	0	-1.230247	3.340566	-0.933213	48	1	0	3.062917	-0.269866	-1.871438
13	6	0	0.000000	3.509133	1.274394						
14	6	0	-2.501733	-1.444376	-0.123609	Tricycle	ohexyl	isocya	nurate(C _{3h}) I	E(RB3LYP) =	-1210.65474074
15	6	0	-3.508138	-0.604857	-0.933213	1	7	0	-0.956564	-0.972888	0.000000
16	6	0	-2.277891	-2.735708	-0.933213	2	6	0	0.384128	-1.364649	0.000000
17	6	0	-3.038998	-1.754567	1.274394	3	7	0	1.320827	-0.341965	0.000000
18	6	0	2.501733	-1.444376	-0.123609	4	6	0	0.989756	1.014989	0.000000
19	6	0	3.038998	-1.754567	1.274394	5	7	0	-0.364263	1.314852	0.000000
20	6	0	2.277891	-2.735708	-0.933213	6	6	0	-1.373885	0.349659	0.000000
21	6	0	3.508138	-0.604857	-0.933213	7	8	0	0.709920	-2.533697	0.000000

8	8	0	1.839286	1.881657	0.000000	4	44	6	0	-0.794903	2.743653	0.000000
9	8	0	-2.549206	0.652040	0.000000	4	45	6	0	-0.373833	3.482007	1.273987
10	6	0	-1.978622	-2.060232	0.000000	4	46	6	0	-0.373833	3.482007	-1.273987
11	6	0	-2.828590	-2.064753	1.273987	4	47	1	0	-1.879055	2.679247	0.000000
12	6	0	-2.828590	-2.064753	-1.273987	4	48	6	0	-0.944985	4.904521	1.263497
13	1	0	-1.380768	-2.966933	0.000000	4	49	1	0	0.712568	3.521334	1.335438
14	6	0	-3.774947	-3.270642	1.263497	5	50	1	0	-0.735944	2.932162	2.145525
15	1	0	-3.405848	-1.143565	1.335438	5	51	6	0	-0.944985	4.904521	-1.263497
16	1	0	-2.171355	-2.103427	2.145525	5	52	1	0	0.712568	3.521334	-1.335438
17	6	0	-3.774947	-3.270642	-1.263497	5	53	1	0	-0.735944	2.932162	-2.145525
18	1	0	-3.405848	-1.143565	-1.335438	5	54	6	0	-0.528795	5.663715	0.000000
19	1	0	-2.171355	-2.103427	-2.145525	5	55	1	0	-0.614456	5.439042	2.155995
20	6	0	-4.640523	-3.289808	0.000000	5	56	1	0	-2.037989	4.859315	1.312053
21	1	0	-4.403120	-3.251656	2.155995	5	57	1	0	-0.614456	5.439042	-2.155995
22	1	0	-3.189296	-4.194608	1.312053	5	58	1	0	-2.037989	4.859315	-1.312053
23	1	0	-4.403120	-3.251656	-2.155995	5	59	1	0	-0.965794	6.664417	0.000000
24	1	0	-3.189296	-4.194608	-1.312053	6	50	1	0	0.558112	5.793065	0.000000
25	1	0	-5.288658	-4.168611	0.000000							
26	1	0	-5.295997	-2.413193	0.000000	Tri	ipheny	/l isocy	anur	ate(D ₃)	E(RB3LYP) =	-1199.71512245
26 27	1 6	0 0	-5.295997 2.773525	-2.413193 -0.683421	0.000000	Trij	ipheny 1	r l isocy 7	v anur 0	ate(D ₃)	E(RB3LYP) = 1.359872	-1199.71512245 0.000000
26 27 28	1 6 6	0 0 0	-5.295997 2.773525 3.202424	-2.413193 -0.683421 -1.417255	0.000000 0.000000 1.273987	Tri	ipheny 1 2	7 6	o 0 0	ate(D ₃) 0.000000 1.239791	E(RB3LYP) = 1.359872 0.715794	-1199.71512245 0.000000 0.000000
26 27 28 29	1 6 6	0 0 0 0	-5.295997 2.773525 3.202424 3.202424	-2.413193 -0.683421 -1.417255 -1.417255	0.000000 0.000000 1.273987 -1.273987	Tri	ipheny 1 2 3	7 7 6 7	7 anur 0 0 0	ate(<i>D</i> ₃) 0.000000 1.239791 1.177684	E(RB3LYP) = 1.359872 0.715794 -0.679936	-1199.71512245 0.000000 0.000000 0.000000
26 27 28 29 30	1 6 6 1	0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823	-2.413193 -0.683421 -1.417255 -1.417255 0.287686	0.000000 0.000000 1.273987 -1.273987 0.000000	Tri	ipheny 1 2 3 4	7 7 6 7 6	2 anur 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587	-1199.71512245 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31	1 6 6 1 6	0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932	-2.413193 -0.683421 -1.417255 -1.417255 0.287686 -1.633879	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497	Tri	ipheny 1 2 3 4 5	7 6 7 6 7 6 7	7 anur 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32	1 6 6 1 6 1	0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280	-2.413193 -0.683421 -1.417255 -1.417255 0.287686 -1.633879 -2.377769	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438	Tri	ipheny 1 2 3 4 5 6	7 6 7 6 7 6 7 6	vanur 0 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33	1 6 6 1 6 1	0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298	-2.413193 -0.683421 -1.417255 -1.417255 0.287686 -1.633879 -2.377769 -0.828735	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525	Tri	ipheny 1 2 3 4 5 6 7	/ l isocy 7 6 7 6 7 6 8	2 anur 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33 34	1 6 1 1 1 1	0 0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298 4.719932	-2.413193 -0.683421 -1.417255 -1.417255 0.287686 -1.633879 -2.377769 -0.828735 -1.633879	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525 -1.263497	Tri	ipheny 1 2 3 4 5 6 7 8	/l isocy 7 6 7 6 7 6 8 8 8	2 anur 0 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282 0.000000	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253 -2.636507	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33 34 35	1 6 1 1 1 6 1	0 0 0 0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298 4.719932 2.693280	-2.413193 -0.683421 -1.417255 -1.417255 0.287686 -1.633879 -2.377769 -0.828735 -1.633879 -2.377769	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525 -1.263497 -1.2335438	Tri	ipheny 1 2 3 4 5 6 7 8 9	rl isocy 7 6 7 6 7 6 7 6 8 8 8 8 8	2 anur 0 0 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282 0.000000 -2.283282	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253 -2.636507 1.318253	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33 34 35 36	1 6 1 1 1 6 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298 4.719932 2.693280 2.907298	-2.413193 -0.683421 -1.417255 0.287686 -1.633879 -2.377769 -0.828735 -1.633879 -2.377769 -0.828735	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525 -1.263497 -1.335438 -2.145525	Tri	ipheny 1 2 3 4 5 6 7 8 9 10	rl isocy 7 6 7 6 7 6 8 8 8 8 8 8 8 6	2 anur 0 0 0 0 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282 0.000000 -2.283282 0.000000	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253 -2.636507 1.318253 2.804957	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33 34 35 36 37	1 6 1 1 6 1 1 6 1 1 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298 4.719932 2.693280 2.907298 5.169319	-2.413193 -0.683421 -1.417255 0.287686 -1.633879 -2.377769 -0.828735 -1.633879 -2.377769 -0.828735 -0.828735 -0.828735	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525 -1.263497 -1.335438 -2.145525 0.000000	Tri 1	ipheny 1 2 3 4 5 6 7 8 9 10 11	1 isocy 7 6 7 6 7 6 8 8 8 8 8 8 8 6 6	2anur 0 0 0 0 0 0 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282 0.000000 -2.283282 0.000000 2.429164	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253 -2.636507 1.318253 2.804957 -1.402478	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33 34 35 36 37 38	1 6 1 1 1 6 1 1 6 1 1 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298 4.719932 2.693280 2.907298 5.169319 5.017577	-2.413193 -0.683421 -1.417255 0.287686 -1.633879 -2.377769 -0.828735 -1.633879 -2.377769 -0.828735 -2.377769 -0.828735	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525 -1.263497 -1.335438 -2.145525 0.000000 2.155995	Tri 1 1	ipheny 1 2 3 4 5 6 7 8 9 10 11 12	rl isocy 7 6 7 6 7 6 8 8 8 8 8 8 8 6 6 6 6	Canur 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate(<i>D</i> ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282 0.000000 -2.283282 0.000000 2.429164 -2.429164	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253 -2.636507 1.318253 2.804957 -1.402478 -1.402478	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33 34 35 36 37 38 39	1 6 1 1 1 1 6 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298 4.719932 2.693280 2.907298 5.169319 5.107577 5.227285	-2.413193 -0.683421 -1.417255 0.287686 -1.633879 -2.377769 -0.828735 -1.633879 -2.377769 -0.828735 -2.377769 -0.828735 -2.373907 -2.187386 -0.664707	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525 -1.263497 -1.335438 -2.145525 0.000000 2.155995 1.312053	Tri 1 1 1	ipheny 1 2 3 4 5 6 7 8 9 10 11 12 13	rl isocy 7 6 7 6 7 6 8 8 8 8 8 8 8 6 6 6 6 6 6	2anur 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282 0.000000 -2.283282 0.000000 2.429164 -2.429164 0.341112	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253 -2.636507 1.318253 2.804957 -1.402478 -1.402478 3.487589	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	1 6 1 1 1 6 1 1 6 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298 4.719932 2.693280 2.907298 5.169319 5.017577 5.227285 5.017577	-2.413193 -0.683421 -1.417255 0.287686 -1.633879 -2.377769 -0.828735 -1.633879 -2.377769 -0.828735 -2.377907 -2.187386 -0.664707 -2.187386	0.000000 0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525 -1.263497 -1.335438 -2.145525 0.000000 2.155995 1.312053 -2.155995	Tri 1 1 1 1	ipheny 1 2 3 4 5 6 7 8 9 10 11 12 13 14	rl isocy 7 6 7 6 7 6 8 8 8 8 8 8 8 6 6 6 6 6 6 6	2anur 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282 0.000000 -2.283282 0.000000 2.429164 -2.429164 0.341112 0.343625	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253 -2.636507 1.318253 2.804957 -1.402478 -1.402478 3.487589 4.876159	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	1 6 1 1 6 1 1 6 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298 4.719932 2.693280 2.907298 5.169319 5.017577 5.227285 5.017577 5.227285	-2.413193 -0.683421 -1.417255 0.287686 -1.633879 -2.377769 -0.828735 -1.633879 -2.377769 -0.828735 -2.373907 -2.187386 -0.664707 -2.187386 -0.664707	0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525 -1.263497 -1.335438 -2.145525 0.000000 2.155995 1.312053 -2.155995 -1.312053	Tri 1 1 1 1 1	ipheny 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	A isocy 7 6 7 6 7 6 8 8 8 8 8 8 8 6 6 6 6 6 6 6	2 anur 0 0 0 0 0 0 0 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282 0.000000 -2.283282 0.000000 2.429164 -2.429164 0.341112 0.343625 0.000000	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253 -2.636507 1.318253 2.804957 -1.402478 3.487589 4.876159 5.571084	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	1 6 1 6 1 1 6 1 1 6 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.295997 2.773525 3.202424 3.202424 3.259823 4.719932 2.693280 2.907298 4.719932 2.693280 2.907298 5.169319 5.017577 5.227285 5.017577 5.227285 6.254452	-2.413193 -0.683421 -1.417255 0.287686 -1.633879 -2.377769 -0.828735 -1.633879 -2.377769 -0.828735 -2.377769 -0.828735 -2.373907 -2.187386 -0.664707 -2.187386	0.000000 1.273987 -1.273987 0.000000 1.263497 1.335438 2.145525 -1.263497 -1.335438 -2.145525 0.000000 2.155995 1.312053 -2.155995 -1.312053 0.000000	Tri 1 1 1 1 1 1 1 1 1	ipheny 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	rl isocy 7 6 7 6 7 6 8 8 8 8 8 6 6 6 6 6 6 6 6 6	2anur 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate(D ₃) 0.000000 1.239791 1.177684 0.000000 -1.177684 -1.239791 2.283282 0.000000 -2.283282 0.000000 2.429164 0.341112 0.343625 0.000000 -0.343625	E(RB3LYP) = 1.359872 0.715794 -0.679936 -1.431587 -0.679936 0.715794 1.318253 -2.636507 1.318253 2.804957 -1.402478 -1.402478 3.487589 4.876159 5.571084 4.876159	-1199.71512245 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.157293 1.154248 0.000000 -1.154248

18	6	0	-3.190897	-1.448382	1.157293
19	6	0	-4.394690	-2.140491	1.154248
20	6	0	-4.824700	-2.785542	0.000000
21	6	0	-4.051065	-2.735667	-1.154248
22	6	0	-2.849784	-2.039206	-1.157293
23	6	0	2.849784	-2.039206	1.157293
24	6	0	4.051065	-2.735667	1.154248
25	6	0	4.824700	-2.785542	0.000000
26	6	0	4.394690	-2.140491	-1.154248
27	6	0	3.190897	-1.448382	-1.157293
28	1	0	0.612153	2.934268	2.045115
29	1	0	0.613554	5.413701	2.052840
30	1	0	0.000000	6.652638	0.000000
31	1	0	-0.613554	5.413701	-2.052840
32	1	0	-0.612153	2.934268	-2.045115
33	1	0	-2.847227	-0.936994	2.045115
34	1	0	-4.995179	-2.175497	2.052840
35	1	0	-5.761353	-3.326319	0.000000
36	1	0	-4.381625	-3.238204	-2.052840
37	1	0	-2.235075	-1.997274	-2.045115
38	1	0	2.235075	-1.997274	2.045115
39	1	0	4.381625	-3.238204	2.052840
40	1	0	5.761353	-3.326319	0.000000
41	1	0	4.995179	-2.175497	-2.052840
42	1	0	2.847227	-0.936994	-2.045115

The Cartesian coordinates of the optimized isocyanate

Methyl isocyanate (C_s) E(RB3LYP) = -208.073147882

1	6	0	1.340406	1.106070	0.000000	<i>n</i> -But	yl isaoc	yanate ((<i>C</i> ₁)	E(RB3LYP) =	-326.068771858
2	1	0	1.294021	2.192579	0.000000	1	7	0	1.441461	0.712698	-0.247474
3	1	0	1.886834	0.783661	0.887527	2	6	0	1.963502	-0.349358	-0.066737
4	1	0	1.886834	0.783661	-0.887527	3	8	0	2.559335	-1.356259	0.022001
5	7	0	0.000000	0.579737	0.000000	4	6	0	-2.745294	-0.942492	-0.128125
6	6	0	-0.559972	-0.478178	0.000000	5	6	0	-1.376758	-0.444848	0.334087
7	8	0	-1.218786	-1.448176	0.000000	6	6	0	-1.032484	0.932404	-0.230205
						7	6	0	0.315023	1.482214	0.238690
Ethyl	isocyan	nate (Cs)		E(RB3LYP) =	-247.406675331	8	1	0	-2.970730	-1.926140	0.284851
1	7	0	0.000000	0.285177	0.000000	9	1	0	-3.538568	-0.259755	0.183260
2	6	0	1.036884	0.884473	0.000000	10	1	0	-2.785551	-1.021167	-1.216350
3	8	0	1.983858	1.575969	0.000000	11	1	0	-0.612870	-1.167012	0.036430
4	6	0	-1.993988	-1.129384	0.000000	12	1	0	-1.350046	-0.401891	1.427363
5	6	0	-0.473346	-1.085150	0.000000	13	1	0	-1.801445	1.651322	0.068717
6	1	0	-2.338273	-2.164083	0.000000	14	1	0	-1.040473	0.899729	-1.322789
7	1	0	-2.393856	-0.631382	0.882955	15	1	0	0.347450	1.517034	1.331162
8	1	0	-2.393856	-0.631382	-0.882955	16	1	0	0.443392	2.501549	-0.122595
9	1	0	-0.081091	-1.598387	-0.880924						
9 10	1	0 0	-0.081091 -0.081091	-1.598387 -1.598387	-0.880924 0.880924	<i>n</i> -hex	/l isocy	anate (O	C1)	E(RB3LYP) =	-404.730027282
9 10	1 1	0 0	-0.081091 -0.081091	-1.598387 -1.598387	-0.880924 0.880924	<i>n-</i> hex	y l isocy 7	v anate (C 0	C1) 2.683294	E(RB3LYP) = -0.256377	- 404.730027282 -0.222780
9 10 <i>n</i> -Proj	1 1 Dyl isoc	0 0 :yanate(-0.081091 -0.081091 <i>C</i> 1)	-1.598387 -1.598387 E(RB3LYP) =	-0.880924 0.880924 -286.738234379	<i>п</i> -ћеху 1 2	y l isocy 7 6	7 anate (6 0 0	2.683294 2.695779	E(RB3LYP) = -0.256377 0.932969	- 404.730027282 -0.222780 -0.087395
9 10 <i>n</i> -Proj 1	1 1 oyl isoc 7	0 0 eyanate(t	-0.081091 -0.081091 C 1) 0.671129	-1.598387 -1.598387 E(RB3LYP) = -0.861808	-0.880924 0.880924 -286.738234379 -0.181283	<i>n</i> -hex 1 2 3	y l isocy 7 6 8	y <mark>anate (0</mark> 0 0 0	E1) 2.683294 2.695779 2.803465	E(RB3LYP) = -0.256377 0.932969 2.100433	- 404.730027282 -0.222780 -0.087395 -0.038491
9 10 <i>n</i> -Proj 1 2	1 1 byl isoc 7 6	0 0 cyanate(0 0	-0.081091 -0.081091 C1) 0.671129 1.546077	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750	<i>n</i> -hexy 1 2 3 4	yl isocy 7 6 8 6	2 anate (C 0 0 0 0	2.683294 2.695779 2.803465 1.963584	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291
9 10 <i>n</i> -Proj 1 2 3	1 1 oyl isoc 7 6 8	0 0 eyanate (4 0 0 0	-0.081091 -0.081091 C ₁) 0.671129 1.546077 2.471594	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366 0.662654	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753	<i>n</i> -hexy 1 2 3 4 5	r l isocy 7 6 8 6 6	7 anate (6 0 0 0 0 0	E1) 2.683294 2.695779 2.803465 1.963584 0.520250	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358
9 10 <i>n</i> -Proj 1 2 3 4	1 1 oyl isoc 7 6 8 6	0 0 eyanate(9 0 0 0 0	-0.081091 -0.081091 C () 0.671129 1.546077 2.471594 -1.514240	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366 0.662654 1.289842	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753 0.122337	<i>n</i> -hexy 1 2 3 4 5 6	y l isocy 7 6 8 6 6 6	7 anate (6 0 0 0 0 0 0	E1) 2.683294 2.695779 2.803465 1.963584 0.520250 -0.373731	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996 -0.356271	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358 0.290591
9 10 <i>n</i> -Proj 1 2 3 4 5	1 1 pyl isoc 7 6 8 6 6	0 0 2yanate(0 0 0 0 0 0	-0.081091 -0.081091 C ₁) 0.671129 1.546077 2.471594 -1.514240 -1.708662	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366 0.662654 1.289842 -0.164066	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753 0.122337 -0.299775	<i>n</i> -bex 1 2 3 4 5 6 7	7 7 6 8 6 6 6 6 6	2 anate (0 0 0 0 0 0 0 0	C1) 2.683294 2.695779 2.803465 1.963584 0.520250 -0.373731 -1.818108	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996 -0.356271 -0.466617	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358 0.290591 -0.196504
9 10 <i>n</i> -Proj 1 2 3 4 5 6	1 1 7 6 8 6 8 6 6 6 6	0 0 cyanate(0 0 0 0 0 0 0 0	-0.081091 -0.081091 C ₁) 0.671129 1.546077 2.471594 -1.514240 -1.708662 -0.672009	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366 0.662654 1.289842 -0.164066 -1.119652	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753 0.122337 -0.299775 0.293956	<i>n</i> -hexy 1 2 3 4 5 6 7 8	1 isocy 7 6 8 6 6 6 6 6 6	Fanate (C 0 0 0 0 0 0 0 0 0 0	C1) 2.683294 2.695779 2.803465 1.963584 0.520250 -0.373731 -1.818108 -2.718948	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996 -0.356271 -0.466617 0.655931	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358 0.290591 -0.196504 0.317693
9 10 <i>n</i> -Proj 1 2 3 4 5 6 7	1 1 7 6 8 6 6 6 6 1	0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	-0.081091 -0.081091 C ₁) 0.671129 1.546077 2.471594 -1.514240 -1.708662 -0.672009 -2.295294	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366 0.662654 1.289842 -0.164066 -1.119652 1.925115	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753 0.122337 -0.299775 0.293956 -0.295613	<i>n</i> -hexy 1 2 3 4 5 6 7 8 9	7 6 8 6 6 6 6 6 6 6	ranate (C 0 0 0 0 0 0 0 0 0	 C1) 2.683294 2.695779 2.803465 1.963584 0.520250 -0.373731 -1.818108 -2.718948 -4.159765 	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996 -0.356271 -0.466617 0.655931 0.538004	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358 0.290591 -0.196504 0.317693 -0.175838
9 10 <i>л</i> -Ргој 1 2 3 4 5 6 7 8	1 1 991 isoce 7 6 8 6 6 6 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.081091 -0.081091 C () 0.671129 1.546077 2.471594 -1.514240 -1.708662 -0.672009 -2.295294 -1.547516	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366 0.662654 1.289842 -0.164066 -1.119652 1.925115 1.391298	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753 0.122337 -0.299775 0.293956 -0.295613 1.209257	<i>n</i> -hexy 1 2 3 4 5 6 7 8 9 10	7 6 8 6 6 6 6 6 6 1	ranate (C 0 0 0 0 0 0 0 0 0 0 0	C1) 2.683294 2.695779 2.803465 1.963584 0.520250 -0.373731 -1.818108 -2.718948 -4.159765 2.510130	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996 -0.356271 -0.466617 0.655931 0.538004 -2.294667	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358 0.290591 -0.196504 0.317693 -0.175838 -0.061616
9 10 <i>n</i> -Proj 1 2 3 4 5 6 7 8 9	1 1 7 6 8 6 6 6 6 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.081091 -0.081091 0.671129 1.546077 2.471594 -1.514240 -1.708662 -0.672009 -2.295294 -1.547516 -0.556586	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366 0.662654 1.289842 -0.164066 -1.119652 1.925115 1.391298 1.683129	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753 0.122337 -0.299775 0.293956 -0.295613 1.209257 -0.220651	<i>n</i> -bexy 1 2 3 4 5 6 7 8 9 10 11	7 6 8 6 6 6 6 6 6 1 1	ranate (C 0 0 0 0 0 0 0 0 0 0 0 0 0	C1) 2.683294 2.695779 2.803465 1.963584 0.520250 -0.373731 -1.818108 -2.718948 -4.159765 2.510130 1.982652	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996 -0.356271 -0.466617 0.655931 0.538004 -2.294667 -1.408850	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358 0.290591 -0.196504 0.317693 -0.175838 -0.061616 1.362629
9 10 <i>n</i> -Proj 1 2 3 4 5 6 7 8 9 10	1 1 pyl isoc 7 6 8 6 6 6 1 1 1 1	0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.081091 -0.081091 0.671129 1.546077 2.471594 -1.514240 -1.514240 -0.672009 -2.295294 -1.547516 -0.556586 -1.680631	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366 0.662654 1.289842 -0.164066 -1.119652 1.925115 1.391298 1.683129 -0.248291	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753 0.122337 -0.299775 0.293956 -0.295613 1.209257 -0.220651 -1.388271	<i>n</i> -hexy 1 2 3 4 5 6 7 8 9 10 11	/l isocy 7 6 8 6 6 6 6 6 6 6 1 1 1	ranate (C 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C1) 2.683294 2.695779 2.803465 1.963584 0.520250 -0.373731 -1.818108 -2.718948 -4.159765 2.510130 1.982652 0.525120	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996 -0.356271 -0.466617 0.655931 0.538004 -2.294667 -1.408850 -1.474837	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358 0.290591 -0.196504 0.317693 -0.175838 -0.061616 1.362629 -1.324298
9 10 <i>n</i> -Proj 1 2 3 4 5 6 7 8 9 10 11	1 1 7 6 8 6 6 1 1 1 1 1	0 0 2yanate(0 0 0 0 0 0 0 0 0 0 0 0 0	-0.081091 -0.081091 C () 0.671129 1.546077 2.471594 -1.514240 -1.708662 -0.672009 -2.295294 -1.547516 -0.556586 -1.680631 -2.693591	-1.598387 -1.598387 E(RB3LYP) = -0.861808 -0.056366 0.662654 1.289842 -0.164066 -1.119652 1.925115 1.391298 1.683129 -0.248291 -0.515276	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753 0.122337 -0.299775 0.293956 -0.295613 1.209257 -0.220651 -1.388271 0.019284	<i>n</i> -hexy 1 2 3 4 5 6 7 8 9 10 11 11 12 13	7 6 8 6 6 6 6 6 6 1 1 1	ranate (C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C1) 2.683294 2.695779 2.803465 1.963584 0.520250 -0.373731 -1.818108 -2.718948 -4.159765 2.510130 1.982652 0.525120 0.111184	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996 -0.356271 -0.466617 0.655931 0.538004 -2.294667 -1.408850 -1.474837 -2.445532	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358 0.290591 -0.196504 0.317693 -0.175838 -0.061616 1.362629 -1.324298 0.077935
9 10 <i>n</i> -Proj 1 2 3 4 5 6 7 8 9 10 11 12	1 1 pyl isoce 7 6 8 6 6 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.081091 -0.081091 C() 0.671129 1.546077 2.471594 -1.514240 -1.708662 -0.672009 -2.295294 -1.547516 -0.556586 -1.680631 -2.693591 -0.917628	-1.598387 -1.598387 E(RB3LVP) = -0.861808 -0.056366 0.662654 1.289842 -0.164066 -1.119652 1.925115 1.391298 1.683129 -0.248291 -0.515276 -2.145448	-0.880924 0.880924 -286.738234379 -0.181283 -0.042750 0.011753 0.122337 -0.299775 0.293956 -0.295613 1.209257 -0.220651 -1.388271 0.019284 0.022666	<i>n</i> -hexy 1 2 3 4 5 6 7 8 9 10 11 12 13 14	7 6 8 6 6 6 6 6 1 1 1 1 1	ranate (C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C1) 2.683294 2.695779 2.803465 1.963584 0.520250 -0.373731 -1.818108 -2.718948 -4.159765 2.510130 1.982652 0.525120 0.111184 -0.358127	E(RB3LYP) = -0.256377 0.932969 2.100433 -1.412728 -1.478996 -0.356271 -0.466617 0.655931 0.538004 -2.294667 -1.408850 -1.474837 -2.445532 -0.361606	-404.730027282 -0.222780 -0.087395 -0.038491 0.269291 -0.231358 0.290591 -0.196504 0.317693 -0.175838 -0.061616 1.362629 -1.324298 0.077935 1.385796

16	1	0	-1.830532	-0.466346	-1.291506		28	1	0	5.569966	0.374516	-1.294627
17	1	0	-2.232972	-1.432560	0.110780							
18	1	0	-2.704654	0.655545	1.411795	i	<i>i</i> -Propy	l isocy	anate (C _s)	E(RB3LYP) =	-286.741493078
19	1	0	-2.302844	1.619569	0.009436		1	7	0	0.063332	0.852756	0.000000
20	1	0	-4.780988	1.349786	0.204753		2	6	0	1.260943	0.798739	-0.000000
21	1	0	-4.204337	0.568267	-1.266560		3	8	0	2.431599	0.873873	-0.000000
22	1	0	-4.609165	-0.403967	0.145850		4	6	0	-1.062717	-0.070677	0.000000
							5	6	0	-1.062717	-0.921666	1.269212
-Octy	l isocy	anate (C ₁)	E(RB3LYP) =	-483.391146175		6	6	0	-1.062717	-0.921666	-1.269212
1	7	0	-3.831270	0.032973	-0.221490		7	1	0	-1.956318	0.554975	0.000000
2	6	0	-3.651884	1.211350	-0.110856		8	1	0	-1.056667	-0.292338	2.158217
3	8	0	-3.570933	2.381742	-0.085569		9	1	0	-1.950412	-1.554697	1.297975
4	6	0	-3.300690	-1.214088	0.289004		10	1	0	-0.181195	-1.564781	1.295629
5	6	0	-1.888631	-1.516360	-0.213945		11	1	0	-1.056667	-0.292338	-2.158217
6	6	0	-0.825507	-0.540854	0.286269		12	1	0	-1.950412	-1.554697	-1.297975
7	6	0	0.580669	-0.886490	-0.202857		13	1	0	-0.181195	-1.564781	-1.295629
8	6	0	1.649311	0.087935	0.290252							
9	6	0	3.055670	-0.253591	-0.199466	(Cyclohe	exyl iso	ocyana	te (C_s)	E(RB3LYP) =	-403.524684021
10	6	0	4.126195	0.719899	0.292999		1	6	0	-0.705747	0.198213	0.000000
11	6	0	5.527708	0.368932	-0.203342		2	6	0	-0.034948	-0.351658	1.264143
12	1	0	-3.313155	-1.188490	1.382151		3	6	0	-0.034948	-1.883275	1.263692
13	1	0	-3.981619	-2.003964	-0.024777		4	6	0	0.624548	-2.443389	0.000000
14	1	0	-1.636087	-2.530175	0.111032		5	6	0	-0.034948	-1.883275	-1.263692
15	1	0	-1.898429	-1.529794	-1.306787		6	6	0	-0.034948	-0.351658	-1.264143
16	1	0	-1.071765	0.474471	-0.036203		7	7	0	-0.728373	1.649818	0.000000
17	1	0	-0.835844	-0.525552	1.381425		8	6	0	0.059874	2.553027	0.000000
18	1	0	0.838290	-1.900777	0.119722		9	8	0	0.730039	3.516124	0.000000
19	1	0	0.586273	-0.906069	-1.297575		10	1	0	-1.750770	-0.120570	0.000000
20	1	0	1.389795	1.101540	-0.032272		11	1	0	0.994504	0.019135	1.296473
21	1	0	1.642532	0.108088	1.385161		12	1	0	-0.544275	0.039267	2.146051
22	1	0	3.315353	-1.267915	0.122355		13	1	0	0.473495	-2.252261	2.156199
23	1	0	3.062829	-0.273254	-1.294557		14	1	0	-1.067114	-2.243757	1.322490
24	1	0	3.865993	1.732690	-0.029089		15	1	0	1.686185	-2.175838	0.000000
25	1	0	4.118658	0.738741	1.387066		16	1	0	0.576372	-3.533995	0.000000
	1	0	6.272001	1.078030	0.161709		17	1	0	0.473495	-2.252261	-2.156199

16	1	0	-1.830532	-0.466346	-1.291506
17	1	0	-2.232972	-1.432560	0.110780
18	1	0	-2.704654	0.655545	1.411795
19	1	0	-2.302844	1.619569	0.009436
20	1	0	-4.780988	1.349786	0.204753
21	1	0	-4.204337	0.568267	-1.266560
22	1	0	-4.609165	-0.403967	0.145850

n-Octyl isocyanate (C1)

27 1 0 5.824525 -0.627222 0.131900

1	7	0	-3.831270	0.032973	-0.221490	
2	6	0	-3.651884	1.211350	-0.110856	
3	8	0	-3.570933	2.381742	-0.085569	
4	6	0	-3.300690	-1.214088	0.289004	
5	6	0	-1.888631	-1.516360	-0.213945	
6	6	0	-0.825507	-0.540854	0.286269	
7	6	0	0.580669	-0.886490	-0.202857	
8	6	0	1.649311	0.087935	0.290252	
9	6	0	3.055670	-0.253591	-0.199466	
10	6	0	4.126195	0.719899	0.292999	
11	6	0	5.527708	0.368932	-0.203342	
12	1	0	-3.313155	-1.188490	1.382151	
13	1	0	-3.981619	-2.003964	-0.024777	
14	1	0	-1.636087	-2.530175	0.111032	
15	1	0	-1.898429	-1.529794	-1.306787	
16	1	0	-1.071765	0.474471	-0.036203	
17	1	0	-0.835844	-0.525552	1.381425	
18	1	0	0.838290	-1.900777	0.119722	
19	1	0	0.586273	-0.906069	-1.297575	
20	1	0	1.389795	1.101540	-0.032272	
21	1	0	1.642532	0.108088	1.385161	
22	1	0	3.315353	-1.267915	0.122355	
23	1	0	3.062829	-0.273254	-1.294557	

18 1 0 -1.067114 -2.243757 -1.322490

19	1	0	0.994504	0.019135	-1.296473	15	1	0	-0.796936	0.062145	-2.155965
20	1	0	-0.544275	0.039267	-2.146051	16	1	0	-0.820889	-1.468446	-1.269449

t-Butyl	isocyar	nate (C	Cs) H	E(RB3LYP) = -326.075222093			Phenyl	isocyaı	1ate (C	's)	E(RB3LYP) =	-399.886593579
1	7	0	0.781572	0.322357	0.000000		1	7	0	1.161964	1.053305	0.000000
2	6	0	1.687649	-0.462642	0.000000		2	6	0	2.355501	0.917221	0.000000
3	8	0	2.649871	-1.133758	0.000000		3	8	0	3.524715	0.910678	0.000000
4	6	0	-0.685370	0.290384	0.000000		4	6	0	-0.000000	0.278822	-0.000000
5	6	0	-1.169780	1.742403	0.000000		5	6	0	-1.231246	0.932076	-0.000000
6	6	0	-1.169780	-0.435231	1.261053		6	6	0	-2.405541	0.191559	-0.000000
7	6	0	-1.169780	-0.435231	-1.261053		7	6	0	-2.362263	-1.198029	-0.000000
8	1	0	-0.806422	2.267037	-0.883225		8	6	0	-1.131605	-1.846975	0.000000
9	1	0	-2.259491	1.775048	0.000000		9	6	0	0.048314	-1.117462	0.000000
10	1	0	-0.806422	2.267037	0.883225		10	1	0	-1.252470	2.012460	-0.000000
11	1	0	-0.820889	-1.468446	1.269449		11	1	0	-3.357746	0.704523	-0.000000
12	1	0	-2.259810	-0.440523	1.296565		12	1	0	-3.278849	-1.771467	-0.000000
13	1	0	-0.796936	0.062145	2.155965		13	1	0	-1.087880	-2.927786	0.000000
14	1	0	-2.259810	-0.440523	-1.296565		14	1	0	1.006513	-1.619563	0.000000