## **†** Electronic Supporting Information (**†**ESI)

Ultrasonication Assisted Fabrication of Tungsten Sulfide/Tungstite Heterostructure

for ppb-level Ammonia Detection at Room Temperature

Ravindra Kumar Jha,<sup>a</sup> Aman Nanda,<sup>a</sup> and Navakanta Bhat<sup>\*a</sup>

<sup>a</sup> Nano-Devices and Sensors Laboratory, Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, Karnataka, India-560012

Email: navakant@iisc.ac.in

Table S1. Comparison of our sensor with recently reported room temperature chemiresistive sensing devices for NH<sub>3</sub> detection

| Materia<br>l                                                       | Meas<br>ured<br>Amm<br>onia<br>Rang<br>e (in<br>ppm) | Response (%)   | Response Time/<br>Recovery Time<br>(Seconds) | Experim<br>ental<br>LOD<br>(ppb) | Ref.         | Year of<br>Report |
|--------------------------------------------------------------------|------------------------------------------------------|----------------|----------------------------------------------|----------------------------------|--------------|-------------------|
| Polyanili<br>ne                                                    | 1-100                                                | 11 @ 1 ppm     | 24/72 @ 100 ppm                              | 1000                             | [S1]         | 2019              |
| TiO <sub>2</sub> /Ti <sub>3</sub><br>C <sub>2</sub> T <sub>x</sub> | 0.5-10                                               | 3.1 @ 10 ppm   | 33/277 @ 10 ppm                              | 500                              | [S2]         | 2019              |
| Au/Grap<br>hene                                                    | 2-250                                                | 34 @ 25 ppm    | 224/178 @ 25 ppm                             | 2000                             | [S3]         | 2019              |
| RGO/W<br>S <sub>2</sub>                                            | 10-50                                                | 121 @ 10 ppm   | 60/300 @ 30 ppm                              | 10000                            | [S4]         | 2019              |
| MoS <sub>2</sub> /C<br>uO                                          | 5-500                                                | 47 @ 100 ppm   | 17/26 @ 100 ppm                              | 5000                             | [85]         | 2018              |
| PANI/C<br>eO <sub>2</sub>                                          | 0.16-<br>50                                          | 262.7 @ 50 ppm | ~348/1020 @ 10<br>ppm                        | 16                               | [S6]         | 2018              |
| RGO/Cu<br>Fe <sub>2</sub> O <sub>4</sub>                           | 5-200                                                | 2 @ 5 ppm      | 3/6 @ 50 ppm                                 | 5                                | [S7]         | 2018              |
| WS <sub>2</sub> /W<br>O <sub>3</sub> .H <sub>2</sub> O             | 0.05-3                                               | 11.36 @50 ppb  | 55.76/23.36 @2 ppm                           | 50                               | This<br>Work | 2020              |

## **Supplementary Note 1**

Gas sensing data for the device is shown in Figure S1. The unexpected behavior for 3 ppm ammonia is repeatable and hence we suggest the operating range of the device to be 50 ppb -2 ppm.

Figure S1. Gas sensing data of the WS<sub>2</sub>/WO<sub>3</sub>.H<sub>2</sub>O based gas sensor towards ammonia gas (green arrow: ammonia gas on; red arrow: ammonia gas off and dry air on).



## **Supplementary References**

- S1. Kulkarni, S. B.; Navale, Y. H.; Navale, S. T.; Stadler, F. J.; Patil, V. B. J. J. o. M. S. M. i. E., J. Mater. Sci.: Mater. Electron.
  2019, 30 (9), 8371-8380. DOI https://doi.org/10.1007/s10854-019-01154-x.
- S2. Tai, H.; Duan, Z.; He, Z.; Li, X.; Xu, J.; Liu, B.; Jiang, Y., Sensors and Actuators B: Chemical 2019, 298, 126874. DOI https://doi.org/10.1016/j.snb.2019.126874.
- S3. Seifaddini, P.; Ghasempour, R.; Ramezannezhad, M.; Nikfarjam, A., Materials Research Express 2019, 6 (4), 045054.
  DOI https://doi.org/10.1088/2053-1591/aafbc4.
- S4. Wang, X.; Gu, D.; Li, X.; Lin, S.; Zhao, S.; Rumyantseva, M. N.; Gaskov, A. M., Sensors and Actuators B: Chemical 2019, 282, 290-299. DOI https://doi.org/10.1016/j.snb.2018.11.080.
- **S5.** Sharma, S.; Kumar, A.; Singh, N.; Kaur, D., *Sensors and Actuators B: Chemical* **2018**, *275*, 499-507. DOI https://doi.org/10.1016/j.snb.2018.08.046.
- S6. Liu, C.; Tai, H.; Zhang, P.; Yuan, Z.; Du, X.; Xie, G.; Jiang, Y., Sensors and Actuators B: Chemical 2018, 261, 587-597. DOI https://doi.org/10.1016/j.snb.2017.12.022.
- S7. Achary, L. S. K.; Kumar, A.; Barik, B.; Nayak, P. S.; Tripathy, N.; Kar, J. P.; Dash, P., Sensors and Actuators B: Chemical 2018, 272, 100-109. DOI https://doi.org/10.1016/j.snb.2018.05.093.