Supporting Information

A novel ethanol gas sensor based on α-Bi₂Mo₃O₁₂/Co₃O₄ nanotubedecorated particles

Salah Ud Din ^a, Mahmood ul Haq ^a, Rabia Khatoon^a, Xuehua Chen ^a, Li Li^b, Manjun Zhang^b, Liping Zhu ^{a,*}

^{a,*} State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China.

^b Electric Power Research Institute of Guangdong Power Grid Co., Ltd, China.

* Corresponding author: Liping Zhu.

Tel.: +86 571 8795 1958.

E-mail address: zjuzlp@163.com

Figure. S1(a, b). Schematic diagram shows SEM high and low magnification the Co_3O_4 nanoparticles.

2.6K· 1.2K·		Element	Weight %	Atomic %	Net Int.
9.8K-		OK	14.52	62.51	50.66
8.4K·	мо				
7.0K-		MoL	20.76	14.9	265.28
5.6K-	MD	BiM	63.21	20.83	617.05
2.8K-		СоК	1.51	1.76	11.65
1.4K-	1			в	B
0.0K	2.6	3.9 5.2	6.5 7.8	9.1 10.4	11.7 1

Figure S2. Schematic diagram shows the EDS spectrum of composite based on α -Bi₂Mo₃O₁₂/Co₃O₄ nanotube-decorated with Co₃O₄ nanoparticles.

Figure S3(a-c). (a) Schematic diagram shows response and recovery features of pure α -Bi₂Mo₃O₁₂ nanofibers(b) The Response/Recovery feature of composite based on α -Bi₂Mo₃O₁₂/Co₃O₄ nanotube-decorated particles while (c)show Response/Recovery feature of Co₃O₄ nanoparticles.

Hall Experiment:

We carried out Hall measurement experiment with model Nanometric, HL5500 of our powder samples based on pure Co_3O_4 nanoparticles and α -Bi₂Mo₃O₁₂ nanofibers, which somewhat exposed p-type behavior of Co_3O_4 and n-type behavior of α -Bi₂Mo₃O₁₂. Our response about this comment that introduced into the revised manuscript as follow: "The electrical resistivity, carrier concentration, and mobility for powder sample based on

pure Co₃O₄ nanoparticles and α -Bi₂Mo₃O₁₂ nanofibers were obtained by the four-probe van der Pauw method using Hall-effect measurement system with model Nanometric, HL5500 in a magnetic field strength of 0.508 T, as exposed in **Table S1**. Based on these measurements, it can be seen that the Co₃O₄ nanoparticles sample exhibit *p*-type conduction due to positive Hall coefficient of 1.42 x10⁰⁶ m²/C having low resistivity of 2.976 x10⁷ Ω -cm, charge mobility of 47.8 cm²/V-s and high carrier concentration of 4.388 x10⁹ cm⁻³ were achieved. While, α -Bi₂Mo₃O₁₂ nanofibers sample exhibit *n*-type conduction due to negative Hall coefficient of -7.86 x10⁰⁶ m²/C with having high resistivity of 7.488 x10⁷ Ω -cm, charge mobility of 105 cm² /V-s and negative carrier concentration of -7.943 x10⁸ cm⁻³ were acquired.

Sample Code.	Resistivity R (ohm-cm)	Hall coefficient RHs (m ² /C)	Carrier density N (/cm ³)	Mobility (cm²/V-s)
Co ₃ O ₄ nanoparticles	2.976 x10 ⁷	+1.42 x10 ⁰⁶	+4.388 x10 ⁹	47.8
α -Bi ₂ Mo ₃ O ₁₂ nanofibers	7.488 x10 ⁷	-7.86 x10 ⁰⁶	-7.943 x10 ⁸	105

$$\label{eq:constraint} \begin{split} \text{Table S1: Hall effect measurement results for powder sample based on pure Co_3O_4} \\ \text{nanoparticles and α-Bi_2Mo_3O_{12}$ nanofibers at ambient temperature.} \end{split}$$

re. S4(a, b). Photograph show UV-vis spectrum while insight figure shows bandgap energy of pure α -Bi₂Mo₃O₁₂ nanofibers (b) Composite based on α -Bi₂Mo₃O₁₂/Co₃O₄ nanotube-decorated particles.