Supplementary Information to the manuscript

A Zn^{II} complex of Ornidazole with decreased nitro radical anion is still very active on

Entamoeba histolytica

^aPromita Nandy, ^bSoumen Singha ^cNeha Banyal, ^cKasturi Mukhopadhyay, ^bSanjay Kumar and ^aSaurabh Das*

^aDepartment of Chemistry, Inorganic Section, Jadavpur University, Kolkata – 700 032, India.
^aDepartment of Physics, Inorganic Section, Jadavpur University, Kolkata – 700 032, India.
^bSchool of Environmental Sciences, Jawaharlal Nehru University, New Delhi – 110067, India.
E-mail: dasrsv@yahoo.in

Equations for evaluating binding constant for the interaction of Zn(Onz)₂Cl₂ with calf thymus DNA

$$\frac{1}{\Delta I} = \frac{1}{\Delta I_{max}} + \frac{K_d}{\Delta I_{max}(C_D - C_0)}$$
(SE 1)
$$K_d = \frac{\left[C_0 - \left(\frac{\Delta I}{\Delta I_{max}}\right)C_0\right] \left[C_D - \left(\frac{\Delta I}{\Delta I_{max}}\right)C_0\right]}{\left(\frac{\Delta I}{\Delta I_{max}}\right)C_0}$$
(SE 2)
$$C_0 \left(\frac{\Delta I}{\Delta I_{max}}\right)^2 - (C_0 + C_D + K_d) \left(\frac{\Delta I}{\Delta I_{max}}\right) + C_D = 0$$
(SE 3)

$$\frac{r}{C_f} = K \tag{SE 4}$$

UV-Vis spectra of Ornidazole and Zn^{II}-Ornidazole in different solvents

Fig. S1: UV-Vis spectra of Onz in A) water, B) methanol, C) DMF and D) acetonitrile

Fig. S2: UV-Vis spectra of Zn(Onz)₂Cl₂ in A) water, B) methanol, C) DMF, D) acetonitrile

	IR bands (values in cm ⁻¹)	
Functional group	ctional group Onz	[Zn(Onz) ₂ Cl ₂]
C=N	1538.21	1565.80
$NO_2(v_s)$	1385.92	1380.48
$NO_2(v_{as})$	1471.60	1482.00

Table S1: IR stretching frequencies of Ornidazole and Zn(Onz)₂Cl₂

Fig. S3

Fig. S4: IR spectrum of [Zn(Onz)₂Cl₂]

Related to the mass spectrum of the complex (C₁₄H₂₀Cl₄ZnN₆O₆)

Expected molecular ion peaks considering isotope distribution due to Zn [isotopes ⁶⁴Zn (49.2%), ⁶⁶Zn (27.7%), ⁶⁷Zn (4.0%) & ⁶⁸Zn (18.5%)] and four Cl atoms (isotopes ³⁵Cl & ³⁷Cl).

571.9483: $C_{14}H_{20}^{35}Cl_4N_6O_6^{64}Zn;$	573.9454: C ₁₄ H ₂₀ ³⁵ Cl ₃ ³⁷ ClN ₆ O ₆ ⁶⁴ Zn;
575.9425: $C_{14}H_{20}{}^{35}Cl_{2}{}^{37}Cl_{2}N_{6}O_{6}{}^{64}Zn$	577.9396: $C_{14}H_{20}^{35}Cl^{37}Cl_3N_6O_6^{64}Zn$
579.9367: C ₁₄ H ₂₀ ³⁷ Cl ₄ N ₆ O ₆ ⁶⁴ Zn;	

573.9452: $C_{14}H_{20}^{35}Cl_4N_6O_6^{66}Zn;$	575.9423: C ₁₄ H ₂₀ ³⁵ Cl ₃ ³⁷ ClN ₆ O ₆ ⁶⁶ Zn;
577.9394: $C_{14}H_{20}^{35}Cl_2^{37}Cl_2N_6O_6^{66}Zn$	579.9365: $C_{14}H_{20}^{35}Cl^{37}Cl_{3}N_{6}O_{6}^{66}Zn$
581.9336: $C_{14}H_{20}^{37}Cl_4N_6O_6^{66}Zn;$	
574.9463: $C_{14}H_{20}^{35}Cl_4N_6O_6^{67}Zn;$	576.9434: C ₁₄ H ₂₀ ³⁵ Cl ₃ ³⁷ ClN ₆ O ₆ ⁶⁷ Zn;
578.9405: $C_{14}H_{20}^{35}Cl_2^{37}Cl_2N_6O_6^{67}Zn$	580.9376: $C_{14}H_{20}^{35}Cl^{37}Cl_3N_6O_6^{67}Zn$
582.9347: C ₁₄ H ₂₀ ³⁷ Cl ₄ N ₆ O ₆ ⁶⁷ Zn	

575.9440: $C_{14}H_{20}^{35}Cl_4N_6O_6^{68}Zn$;577.9411: $C_{14}H_{20}^{35}Cl_3^{37}ClN_6O_6^{68}Zn$;579.9382: $C_{14}H_{20}^{35}Cl_2^{37}Cl_2N_6O_6^{68}Zn$ 581.9353: $C_{14}H_{20}^{35}Cl_3^{37}Cl_3N_6O_6^{68}Zn$ 583.9324: $C_{14}H_{20}^{37}Cl_4N_6O_6^{68}Zn$

Explanation for peaks 536.8239, 538.8197, 540.8192 and 542.8129 in the mass spectrum

Possible masses for a fragment formed from the molecular ion due to loss of Cl coordinated to Zn, considering isotope distribution due to Zn [⁶⁴Zn (49.2%), ⁶⁶Zn (27.7%), ⁶⁷Zn (4.0%) & ⁶⁸Zn (18.5%)] and the three Cl atoms [³⁵Cl (75%) & ³⁷Cl (25%)].

536.9795:
$$C_{14}H_{20}^{35}Cl_{3}N_{6}O_{6}^{64}Zn;$$
538.9766: $C_{14}H_{20}^{35}Cl_{2}^{37}ClN_{6}O_{6}^{64}Zn;$ 540.9737: $C_{14}H_{20}^{35}Cl^{37}Cl_{2}N_{6}O_{6}^{64}Zn$ 542.9708: $C_{14}H_{20}^{37}Cl_{3}N_{6}O_{6}^{64}Zn$ 538.9764: $C_{14}H_{20}^{35}Cl_{3}N_{6}O_{6}^{66}Zn;$ 540.9735: $C_{14}H_{20}^{35}Cl_{2}^{37}ClN_{6}O_{6}^{66}Zn;$ 542.9706: $C_{14}H_{20}^{35}Cl^{37}Cl_{2}N_{6}O_{6}^{66}Zn$ 544.9677: $C_{14}H_{20}^{37}Cl_{3}N_{6}O_{6}^{66}Zn$ 539.9795: $C_{14}H_{20}^{35}Cl_{3}N_{6}O_{6}^{67}Zn;$ 541.9746: $C_{14}H_{20}^{35}Cl_{2}^{37}ClN_{6}O_{6}^{67}Zn;$ 543.9717: $C_{14}H_{20}^{35}Cl^{37}Cl_{2}N_{6}O_{6}^{67}Zn$ 545.9688: $C_{14}H_{20}^{37}Cl_{3}N_{6}O_{6}^{67}Zn$ 540.9752: $C_{14}H_{20}^{35}Cl_{3}N_{6}O_{6}^{66}Zn;$ 542.9723: $C_{14}H_{20}^{35}Cl_{2}^{37}ClN_{6}O_{6}^{66}Zn;$ 544.9694: $C_{14}H_{20}^{35}Cl^{37}Cl_{2}N_{6}O_{6}^{66}Zn$ 546.9665: $C_{14}H_{20}^{37}Cl_{3}N_{6}O_{6}^{66}Zn$

Explanation for the peak at m/z = 485.1884.

Possible masses for a fragment formed from the molecular ion following the loss of two Cl coordinated to Zn and an –OH from any one Onz ligand, considering isotope distribution due to Zn [⁶⁴Zn (49.2%), ⁶⁶Zn (27.7%), ⁶⁷Zn (4.0%) & ⁶⁸Zn (18.5%)] and the two Cl atoms [³⁵Cl (75%) & ³⁷Cl (25%)].

The most probable ones based on relative abundance of Zn and Cl are shown below

$$\begin{split} &485.0080; \ C_{14}H_{20}{}^{35}Cl_2N_6O_5{}^{64}Zn, \quad &487.0049; \ C_{14}H_{20}{}^{35}Cl_2N_6O_5{}^{66}Zn \\ &\text{and} \ &489.0037; \ C_{14}H_{20}{}^{35}Cl_2N_6O_5{}^{68}Zn. \end{split}$$

Explanation for peaks with m/z = 420.0801 and 422.0779

Possible masses for a fragment formed from a molecular ion following the loss of $-CH_3$ and $-NO_2$ from each Onz ligand along with loss of a -Cl from either Onz ligand on the complex, considering isotope distribution due to the Zn [⁶⁴Zn (49.2%), ⁶⁶Zn (27.7%), ⁶⁷Zn (4.0%) & ⁶⁸Zn (18.5%)] and the Cl atom [³⁵Cl (75%) & ³⁷Cl (25%)].

The most probable ones based on relative abundance of Zn and Cl are shown below

419.9859: $C_{12}H_{19}^{35}Cl_3N_4O_2^{64}Zn$, 421.9828: $C_{12}H_{17}^{35}Cl_3N_4O_2^{66}Zn$

Fig. S5: Cyclic voltammograms of 1 mM [Zn(Onz)₂Cl₂] in (A) 0.12 M tetrabutyl ammonium bromide in methanol and (B) in 0.12 M KCl in an aqueous solution on a glassy carbon electrode; Scan rate being 100mV/sec.

Fig. S6

Fig. S6: Cyclic voltammogram of 1 mM Ornidazole showing a single step one electron reduction in 0.12 M KCl in an aqueous - 20% methanol solution on a glassy carbon electrode; Scan rate being 100 mV/sec.

Fig. S7

Fig. S7: Dependence of cathodic peak current on square root of scan rate for the reduction of $[Zn(Onz)_2Cl_2]$ in aqueous solution.