Supplementary Information

Enhancing the performance of LARP-synthesized CsPbBr₃ nanocrystal

LEDs by employing a dual hole injection layer

Dingyan Xu^a, Qun Wan^b, Siyao Wu^a, Yu Zhao^a, Xinglei Xu^a, Liang Li^b, and Gufeng He^{a*}

^aNational Engineering Lab for TFT-LCD Materials and Technologies, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China ^bSchool of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

Fig. S1 histogram of size distribution for CsPbBr₃ NCs.

*E-mail: gufenghe@sjtu.edu.cn

Device	V_{on}^{a}	L _{max}	CE _{max}	PE _{max}	EQE _{max}
	(V)	(cd/m²)	(cd/A)	(Im/W)	(%)
A/B/D	_b	-	-	-	-
C	2.6	324.7	0.15	0.10	0.11
Е	2.3	313.8	0.22	0.17	0.17
F	2.3	332.9	0.23	0.18	0.18

Table S2 Performances of CsPbBr₃ NCs LEDs with different HIL.

 $^{a}V_{on}$ is defined as the voltage at 1 cd/m².

b"-" indicates no light emission

Table S1 Summary of the bi-exponential fitting results for PL lifetime curve of $CsPbBr_3 NCs$ film.

τ_{ave} (ns)	A ₁	τ ₁ (ns)	A ₂	τ_2 (ns)
9.3	0.682	5.1	0.318	18.3

The decay curve is fitted to bi-exponential decay functions of time (t):

$$A = A_1 e^{\frac{-t}{\tau_1}} + A_2 e^{\frac{-t}{\tau_2}}$$
(1)

Where A is the normalized PL intensity, A_1 and A_2 are the fractions of the two decay components, and τ_1 represents the nonradiative recombination of initial photo-induced excitons through trapping states and τ_2 indicates the bimolecularly radiative recombination of carriers. The average lifetime (τ_{ave}) was calculated with A1, A2, τ_1 and τ_2 according to the following equation:

$$\tau_{ave} = A_1 \tau_1 + A_2 \tau_2 \tag{2}$$