Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Systematic Investigation of Magneto-Electronic Structure and Optical Properties of New Halide Double Perovskites Cs₂NaMCl₆ (M=Mn, Co and Ni) by Spin Polarized Calculations

Shabir Ahmad Mir and Dinesh C. Gupta*

Condensed Matter Theory Group, School of Studies in Physics,

Jiwaji University Gwalior- 474011 (INDIA)

E-mail: <u>mirshabir7500@gmail.com</u>[#], <u>sosfizix@gmail.com</u>^{*}

Fig. S1: Structural representation of Cs₂NaM(Mn, Co, Ni)Cl₆ alloys. The Na and transition atoms are engulfed by octahedra of Cl-atoms while as Cs atom is enclosed by cubo-octahedra of 12-Cl atoms

Band Structure

Fig. S2: Zoomed band structure in vicinity of Fermi level for (A) Cs₂NaMnCl₆-up; (B) Cs₂NaCoCl₆-dn (C) (a) Cs₂NaNiCl₆-up reflect the metallic nature of alloys. The crossing over of Fermi level by bands reflects the metallic character in the respective channels.

Optical Properties

The interaction of light with matter can be revealed by analyzing the nature of the extinction coefficient $k(\omega)$ and refractive index $n(\omega)$. The variation to refractive index $n(\omega)$ with photon energy is depicted through Fig. S3(A) and the behaviour of extinction coefficients $k(\omega)$ is represented through Fig. S3(B). The variation of refractive index (n) and extinction coefficients (k) with photon energy replicates the character of real and imaginary dielectric constants, respectively.

Fig. S3: Variation in reflection coefficient and extinction coefficient with photon energy (A) reflection coefficient; (B) extinction coefficient

Fig. S4: (A) Total absorption power; (B) Total conductivity without considering inter-channel transitions of Cs₂NaMCl₆ double perovskites