Supplementary Information Flower-like ZnO-Ag₂O nanocomposite for label and mediator free direct sensing of dinitrotoluene

Urmila Chakraborty^a, Gaurav Bhanjana^a, Jost Adam^b, Yogendra Kumar Mishra^b, Gurpreet Kaur^{a*}, Ganga Ram Chaudhary^{a,c*}, Ajeet Kaushik^{d*}

 ^a Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, 160014, India
^bMads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
^c Sophisticated Analytical Instrumentation Facility (SAIF)/CIL, Panjab University Chandigarh, 160014, India
^dNanoBioTech Laboratory, Department of Natural Sciences, Division of Science, Arts & Mathematics, Florida Polytechnic University, Lakeland-33805, Florida, USA.

*Corresponding authors:

gurpreet14@pu.ac.in (G.K), grc22@pu.ac.in (GRC), akaushik@floridapoly.edu (AK)

Contents:

1. Optimization of amount of coating for fabrication of $ZnO-Ag_2O$ composite nanoflowers modified gold electrode.

2. Estimation of the electrode surface area

1. Optimization of amount of coating for fabrication of ZnO-Ag₂O composite nanoflowers modified gold electrode

To optimize the amount of coating used for the fabrication of the modified gold electrode, DPV measurements in PBS with 20 μ M 2,4 DNT were performed using the electrode coated with different amount (1-7 μ L) of the nanoparticle slurry as shown in **Fig. 1S**. It was observed that when the coating amount was 5 μ L, maximum current response was obtained. Therefore, 5 μ L amount was fixed for fabrication of the modified electrode for further studies.

Figure 1S. DPV for 2,4-DNT (20 μ M in pH 7, 0.1 mM PBS) with different amount of coating (1 μ L-7 μ L).

2. Estimation of the electrode surface area

For estimation of the electrode surface area, scan rate studies were performed with solution of 0.1 mM potassium ferricyanide in 0.1 M KCl, and cyclic voltammograms were recorded for different scan rates (20-150 mVs⁻¹) using the modified electrode. A plot of peak current (I_p; in Amperes) vs. square root of scan rate (v^{1/2}; in (V s⁻¹)^{1/2}) was plotted for the anodic peak current values as shown in **Fig. 2S** (a-b), and the value of the slope obtained was used in Randles-Sevcik equation at 25°C (S.1). The electrode surface area calculated was 0.033 cm².

$$I_{\rm p} = 2.69^* 10^5 \,{\rm n}^{3/2} \,{\rm A} \,{\rm D}^{1/2} \,{\rm C} \,{\rm v}^{1/2} \tag{S.1}$$

where, Ip = peak current value in Amperes, n = number of electrons involved in the electrochemical process (1 for electrochemical oxidation/reduction of pot. ferricyanide), A = electrode area in cm², D = diffusion coefficient in cm² s⁻¹, C = concentration in mol cm⁻³, v = scan rate in V s⁻¹.

Figure 2S (a) CV for different scan rates (20-150 mVs⁻¹) using the modified electrode in solution of 0.1 mM potassium ferricyanide in 0.1 M KCl (b) plot of peak current (I_p ; in Amperes) vs. square root of scan rate ($v^{1/2}$; in (V s⁻¹)^{1/2})