Electronic Supplementary Information (ESI)

A built-in self-calibrating luminescent sensor based on RhB@Zr-MOF for cations, nitro explosives and pesticides detection

Liu Yang^{a, §}, Yu-Long Liu^{a, §}, Cheng-Guo Liu^b, Ying Fu^{a, *} and Fei Ye^{a, *}

^aDepartment of Applied Chemistry, College of Science, Northeast Agricultural

University, Harbin, 150030, People's Republic of China.

^bDepartment of State Assets Management, Northeast Agricultural University, Harbin,

150030, People's Republic of China.

E-mail: fuying@neau.edu.cn; yefei@neau.edu.cn

Fig. S1. (a) IR spectra of Zr-MOF. (b) IR spectra of RhB@Zr-MOF.

Fig. S2. N₂ adsorption isotherm of RhB@Zr-MOF at 77 K.

Fig. S3. The definition of relative peak-height.

Fig. S4. Recycling test on sensing Fe³⁺ in H₂O by **RhB@Zr-MOF** composite.

Fig. S5. UV-Vis spectra of RhB@Zr-MOF with different cations in H₂O.

Fig. S6. Recycling test on sensing 4-NP in ethanol solution by RhB@Zr-MOF composite.

Fig. S7. UV-Vis spectra of RhB@Zr-MOF with different nitro explosive in ethanol

solution.

Fig. S8. The structures of the pesticides used in this work.

Fig. S9. PXRD powder diffraction patterns of simulated (black), and **RhB@Zr-MOF** centrifugated from ethanol solutions of pesticides (red).

Fig. S10. Recycling test on sensing nitenpyram in ethanol solution by RhB@Zr-MOF composite.

Fig. S11. UV-Vis spectra of RhB@Zr-MOF with different pesticides in ethanol solution.

Fig. S12. Normalized emission spectrum of Zr-MOF in the solid state (black) and absorption spectrum of RhB in aqueous solution (red, 0.01 g L^{-1}).

Fig. S13. Luminescence decay curves of RhB in aqueous solution (10 mg L⁻¹) and **RhB@Zr-MOF** in the solid state.

Analytes	Cu ⁺	Ba ²⁺	K ⁺	Mg ²⁺	Ag ⁺	Na ⁺	Cd ²⁺	C0 ²⁺	Cu ²⁺	Hg ²⁺
RLI value	1.50	1.49	1.47	1.42	1.41	1.37	1.37	1.34	1.28	1.27
Analytes	Pb ²⁺	Al ³⁺	Ca ²⁺	Mn ²⁺	In ³⁺	Fe ²⁺	Ni ²⁺	Ga ³⁺	Cr ³⁺	Fe ³⁺
RLI value	1.27	1.16	1.03	0.98	0.96	0.95	0.94	0.89	0.81	0.77

Table S1. The RLI values of different cations.

Analytes	NX	1,3-DNB	1,4-DNB	1,2-DNB	3-NT
RLI value	0.93	0.90	0.87	0.84	0.75
Analytes	4-NT	2-NT	3-NP	2-NP	4-NP
RLI value	0.73	0.72	0.57	0.35	0.17

 Table S2. The RLI values of different nitro explosives.

Analytes	Etoxazole	Fluroxypyr	Acetamiprid	Isoxaflutole	Carbaryl
RLI value	0.88	0.82	0.81	0.70	0.70
Analytes	Carbendazim	Teflubenzuron	Thiamethoxam	Rotenone	Nitenpyram
RLI value	0.68	0.67	0.67	0.38	0.18

 Table S3. The RLI values of different pesticides.