Electronic Supplementary Information (ESI)

Photo-Responsive Azobenzene Interactions Promote Hierarchical Self-Assembly of Collagen Triple-Helical Peptides to Various Higher-Order Structures

Nobuyuki Higashi,* Ryo Yoshikawa, Tomoyuki Koga*

Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering. Doshisha University, Kyotanabe, Kyoto 610-0321, JAPAN

Table of Contents

Experimental Procedures and Analyses	2
Figures	
S1. MALDI-TOF MS spectra for Azo-CMPs	5
S2. ¹ H NMR spectra for Azo-CMPs	6
S3. CD spectra for Azo-CMPs (<i>trans</i> -form)	7
S4. AFM images for Azo-CMPs (<i>trans</i> -form)	8
S5. TEM images for Azo-CMPs after UV-irradiation	9
S6. Photographs of Azo-CMPs (trans-form) in the concentrated situation 1	0

Experimental Procedures and Analyses

Syntheses of C_mAzo-OH (m=6,12).

 C_m Azo-OH (*m*=6, 12) were synthesized as follows. 4-(4-hexyloxyphenylazo)benzoic acid hexyl ester was firstly prepared by reaction of 4-(4-hydroxyphenylazo)benzoic acid (1.25 mmol) and 1-bromohexane(10.0 mmol) in DMF with K₂CO₃ (1.25 mmol) and 18-crown-6-ether (0.125 mmol) at room temperature for 24 h, and then the reaction mixture was pored into water and extracted with *n*-hexane and finally recrystallized with *n*-hexane. 4-(4-dodecyloxyphenylazo)benzoic acid dodecyl ester was prepared using 1-bromododecane in place of 1-bromohexane by the same manner and stoichiometry. These esters thus obtained were allowed to hydrolysis with ethanolic NaOH in THF giving the corresponding objectives. The chemical structure was determined by ¹H NMR spectroscopy.

C₆Azo-OH (4-(4-hexyloxyphenylazo)benzoic acid) : ¹H NMR (DMSO-*d*₆, TMS) 0.8-1.0 ppm (3H, -CH₃), 1.3-1.9 ppm (8H, -CH₂(CH₂)₄CH₃), 4.0-4.1 ppm (2H, -CH₂CH₂O-), 7.0-8.2 ppm (8H, Ar : aromatic ring of azobenzene), 13.1-13.2 ppm (1H, Ar-COOH).

C₁₂Azo-OH (4-(4-dodecyloxyphenylazo)benzoic acid): ¹H NMR (DMSO-*d*₆, TMS) 0.8-1.0 ppm (3H, -CH₃), 1.3-1.9 ppm (20H, -CH₂(CH₂)₁₀CH₃), 4.0-4.1 ppm (2H, -CH₂CH₂O-), 7.0-8.2 ppm (8H, Ar : aromatic ring of azobenzene), 13.1-13.2 ppm (1H, Ar-COOH).

Azo-(GPO)_n, Azo-deg-(GPO)₅, C₁₂Azo-(GPO)₅ (m=3-10) (see Figures S1 and S2)

Azo-(GPO)₃ : MALDI-TOFMS 1029.6 [M+H]⁺/1028.1 [M+H]⁺_{Theory}. ¹H NMR (D2O, DSS) 1.7-2.6 ppm (18H : Pro-β, Pro-γ, Hyp-β), 3.3-4.3 ppm (18H : Pro-δ, Hyp-δ, Gly-α), 4.5-4.8 ppm (9H : Hyp-γ, Hyp-α, Pro-α), 6.6 ~ 8.0 ppm (9H : aromatic ring of azobenzene).

Azo-(GPO)₄ : MALDI-TOFMS 1296.9 [M+H]⁺/1295.4 [M+H]⁺_{Theory}. ¹H NMR (D2O, DSS) 1.7-2.6 ppm (24H : Pro-β, Pro-γ, Hyp-β), 3.3-4.3 ppm (24H : Pro-δ, Hyp-δ, Gly-α), 4.5-4.8 ppm (12H : Hyp-γ, Hyp-α, Pro-α), 6.6-8.0 ppm (9H : aromatic ring of azobenzene). **Azo-(GPO)**₅ : MALDI-TOFMS 3.0 [M+H]+ / 1562.7 [M+H]+Theory. 1H NMR (D₂O, DSS) 1.7-2.6 ppm (30H : Pro-β, Pro-γ, Hyp-β), 3.3-4.3 ppm (30H : Pro-δ, Hyp-δ, Gly-α), 6.6-8.0 ppm (9H : aromatic ring of azobenzene).

Azo-(GPO)₆ : MALDI-TOFMS 1831.0 [M+H]⁺/1829.9 [M+H]⁺_{Theory}. ¹H NMR (D₂O, DSS) 1.7-2.6 ppm (36H : Pro-β, Pro-γ, Hyp-β), 3.3-4.3 ppm (36H : Pro-δ, Hyp-δ, Gly-α), 6.6-8.0 ppm (9H : aromatic ring of azobenzene).

Azo-(GPO)₇ : MALDI-TOFMS 2098.9 [M+H]⁺/2097.2 [M+H]⁺_{Theory}. ¹H NMR (D₂O, DSS) 1.7-2.6 ppm (42H : Pro-β, Pro-γ, Hyp-β), 3.3-4.3 ppm (42H :Pro-δ, Hyp-δ, Gly-α), 6.6-8.0 ppm (9H : aromatic ring of azobenzene).

Azo-(GPO)₈ : MALDI-TOFMS 2365.4 [M+H]⁺/2364.5 [M+H]⁺_{Theory}. ¹H NMR (D₂O, DSS) 1.7-2.6 ppm (48H : Pro-β, Pro-γ, Hyp-β), 3.3-4.3 ppm (48H : Pro-δ, Hyp-δ, Gly-α), 6.6-8.0 ppm (9H : aromatic ring of azobenzene).

Azo-(GPO)₉ : MALDI-TOFMS 2632.5 [M+H]⁺/2631.8 [M+H]⁺_{Theory}. ¹H NMR (D₂O, DSS) 1.7-2.6 ppm (54H : Pro-β, Pro-γ, Hyp-β), 3.3-4.3 ppm (54H : Pro-δ, Hyp-δ, Gly-α), 6.6-8.0 ppm (9H : aromatic ring of azobenzene).

Azo-(GPO)₁₀ : MALDI-TOFMS 2900.1 [M+H]⁺/2899.1 [M+H]⁺_{Theory}. ¹H NMR (D₂O, DSS) 1.7-2.6 ppm (60H : Pro-β, Pro-γ, Hyp-β), 3.3-4.3 ppm (60H : Pro-δ, Hyp-δ, Gly-α), 6.6-8.0 ppm (9H : aromatic ring of azobenzene).

Azo-*deg***-(GPO)**₅ : MALDI-TOFMS 1708.7 [M+H]⁺/1707.8 [M+H]⁺_{Theory}. ¹H NMR (D₂O, DSS) 1.7-2.7 ppm (30H : Pro-β, Pro-γ, Hyp-β), 3.3-4.3 ppm (40H : deg, Proδ, Hyp-δ, Gly-α), 6.6-8.0 ppm (9H : aromatic ring of azobenzene).

C₆Azo-(GPO)₅ : MALDI-TOFMS 1662.9 [M+H]⁺/1662.8 [M+H]⁺_{Theory}. ¹H NMR (D₂O/TFE, DSS) 0.8-1.0 ppm (3H, CH₃- : alkyl chain), 1.2-1.6 ppm (8H, CH₃(CH₂)₄CH₂- : alkyl chain), 1.7-2.6 ppm (30H : Pro-β, Pro-γ, Hyp-β), 3.4-4.3 ppm (30H :Pro-δ, Hyp-δ, Gly-α), 7.0-8.0 ppm (8H : aromatic ring of azobenzene).

C₁₂Azo-(GPO)₅ : MALDI-TOFMS 1747.6 [M+H]⁺/1746.9 [M+H]⁺_{Theory}.

¹H NMR (D₂O/TFE, DSS) 0.8-1.0 ppm (3H, CH₃- : alkyl chain), 1.2-1.6 ppm (20H, CH₃(CH₂)₁₀CH₂- : alkyl chain), 1.7-2.6 ppm (30H : Pro-β, Pro-γ, Hyp-β), 3.4-4.3 ppm (30H : Pro-δ, Hyp-δ, Gly-α), 7.0-8.0 ppm (8H : aromatic ring of azobenzene).

Figure S1. MALDI-TOF MS spectra of $Azo-(GPO)_n$ (*n*=3 (a), 4 (b), 5 (c), 6 (d), 7 (e), 8 (f), 9 (g), and 10 (h)), $Azo-deg-(GPO)_5$ (i) and $C_mAzo-(GPO)_5$ (*m*=6 (j) and 12 (k)).

Figure S2. ¹H NMR spectra of **Azo-(GPO)**_{*n*} (*n*=3 (a), 4 (b), 5 (c), 6 (d), 7 (e), 8 (f), 9 (g), and 10 (h)), **Azo-deg-(GPO)**₅ (i) and **C**_{*m*}**Azo-(GPO)**₅ (*m*=6 (j) and 12 (k)).

Figure S3. Changes in the CD spectra of $Azo-(GPO)_n$ (*trans*-form) (*n*=3 (a), 4 (b), 5 (c), 6 (d), 7 (e), 8 (f), 9 (g), and 10 (h)), and $Azo-deg-(GPO)_5$ (*trans*-form) (i) in water upon incubation at 4 °C after the thermal treatment at 60–90 °C, above which the peptides denature.

Figure S4. AFM images of $Azo-(GPO)_n$ (*trans*-form) (n=3 (a), 4 (b), 5 (c), 6 (d), 7 (e), 8 (f), 9 (g), and 10 (h)), Azo-*deg*-(GPO)₅ (*trans*-form) (i), and C_m Azo-(GPO)₅ (*trans*-form) (m = 6 (j) and 12 (k)). The pictures were taken after 24 h incubation at 4 °C.

Figure S5. TEM images of Azo-(GPO)_n (*cis*-form) (n=3 (a), 4 (b), 5 (c), 6 (d), 7 (e), 8 (f), 9 (g), and 10 (h)), Azo-*deg*-(GPO)₅ (*cis*-form) (i), and C_m Azo-(GPO)₅ (*trans*-form) (m = 6 (j) and 12 (k)). The pictures were taken after 2 h UV irradiation at 4 °C and then stained by phosphotungstic acid.

Figure S6. Photographs of Azo-(GPO)_n (*trans*-form) (n=3 (a), 4 (b), 5 (c), 6 (d), 7 (e), 8 (f), 9 (g), and 10 (h)), Azo-*deg*-(GPO)₅ (*trans*-form) (i) aqueous solutions (6 wt%) incubated at 4 °C for 24 h.