Supplementary Information Materials

for

Model-based research toward design of innovative materials: Molecular weight prediction of bridged polysilsesquioxanes

Takayoshi Ishimoto^{*a,b}, Satoru Tsukada^a, Shin Wakitani^c, Kenji Sato^a, Daiki Saito^d, Yuki Nakanishi^d, Sakino Takase^d, Takashi Hamada^{a,d}, Joji Ohshita^{*a,d,e}, and Hiroyuki Kai^{*a}

^{a.} Advanced Materials Laboratory, Advanced Automotive Research Collaborative Laboratory, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.

^{b.} Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

^{c.} Fundamentals of Model-Based Development, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.

 ^{d.} Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.
 ^{e.} Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan.

*Correspondence: jo@hiroshima-u.ac.jp, kaihi@hiroshima-u.ac.jp, tishimo@yokohamacu.ac.jp

Fig. S1. $^{29}Si\{^{1}H\}$ NMR of BTES–P in CDCl₃.

Fig. S2. Plots of GPC molecular weights (M_w) versus H₂O/silane molar ratios for polymerization of BTES–Ph.

Silane	H ₂ O/Silane	Molecular weight ^b	- Silane	H ₂ O/Silane	Molecular weight
	molar ratio	$M_{ m w} imes 10^{-3}/{ m g~mol^{-1}}$		molar ratio	$M_{ m w} imes 10^{-3}/ m g\ mol^{-1}$
BTES–M	1.5	0.8	BTES–E2 ^c	0.9	2.4
	1.6	1.1		1.1	4.0
	1.9	2.2		1.2	4.3
	2.0	1.7		1.3	6.1
	2.1	2.2		1.4	10.5
	2.2	2.2		1.5	14.0
	2.3	5.4		0.8	3.1
BTES–E1	1.5	0.8	BTES–E3 ^c	0.9	4.4
	1.6	1.1		1.0	4.1
	1.9	2.2		1.1	9.1
	2.0	1.7		1.2	16.3
	2.1	2.2			
	2.2	2.2			
	2.3	5.4			

Table S1. Results of sol-gel reactions of BTES-M, -E1, -E2, and -E3.^a

^{*a*}Scale in operation: silane 5 mmol, molar ratios: EtOH/silane = 50 mmol.

^bDetermined by GPC relative to polystyrene standards.

^{*c*}The Data from Ref. 1 were used.

Reference

1 K. Yamamoto, J. Ohshita, T. Mizuno, and T. Tsuru, J. Sol-Gel Sci. Technol., 2014, 71, 24-30.

Detailed procedure of model equation construction based on MBR

- 1. Prepare experimental data of molecular weight (BTES-M, -E1, -E2, and -E3).
- 2. Prepare simple equation (usually within two paprameters) for fitting of experimental data. (We also tried various types of equations having two parameters. Best values for R^2 was $y = ax^n$, in this study. *a* and *n* are objective parameters for machine learning.)
- Calculate various electronic structure and structural values of BTES-M, -E1, -E2, and -E3 monomers by using density functional theory and molecular dynamics simulation. (16 parameters were obtained as explanatory parameters)
- 4. Calculate relation between objective parameters obtained from fitting of experimental data (*a* and *n* in $y = ax^n$) and explanatory parameters obtained from simulation by using LASSO.
- 5. Obtain model equations for a and n using selected explanatory parameters.
- 6. Check accuracy of model equations.
- 7. Analyze chemical and physical contributions to determine molecular weight.
- 8. Calculate explanatory parameters in model equations to obtain *a* and *n* values for unknown compounds from simulation. (in this study, BTES–P, and –Ph)
- Draw predicted molecular weight line based on model equations for unknown compunds. (in this study, BTES-P, and -Ph)
- 10. Predict molecular weight line for target molecule. (In this study, we just compared and validated reliability of predicted molecular weight line for BTES-P, and -Ph)