Supporting information

Simple Organocatalysts Component System for Asymmetric Hetero Diels-Alder Reaction of Isatins with Enones

Perumalsamy Parasuraman,^a Zubeda Begum,^a Madhu Chennapuram,^a Chigusa Seki,^a Yuko Okuyama,^b Eunsang Kwon,^c Koji Uwai,^a Michio Tokiwa,^d Suguru Tokiwa,^d Mitsuhiro Takeshita,^d and Hiroto Nakano^{*a}

"Division of Sustainable and Environmental Engineering, Graduate school of engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585, E-mail: catanaka@mmm.muroran-it.ac.jp.

^bTohoku Medicinal and Pharmaceutical University, 4-4-1 Komastsushima, Aoba-Ku, Sendai 981-8558, Japan.

^cResearch and Analytical center for Giant molecules, Graduate School of Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan.

^dTokiwakai Group, 62 Numajiri Tsuduri-Chou Uchigo, Iwaki 973-8053, Japan.

- 1. General information.
- 2. General procedure for the Hetero Diels-Alder (HDA) reaction of isatins with enones.
- 3. Large scale synthesis of 8a using Hetero Diels-Alder (HAD) reaction of isatins (6a) with enones (7a)
- 4. High performance Liquid Chromatography (HPLC) data of HDA adducts 8a-i
- 5. ¹H NMR and ¹³C NMR spectra of compounds 8a-i.

1.General information:

All reagents and dry solvents were purchased from commercial vendors and used directly without further purification. All reactions were placed in dried sample vials inserted with magnetic beads. Thin-layer chromatography (TLC) was performed on Merck silica gel 60 F₂₅₄ plates and the analytes were identified under UV light. Flash column chromatography was performed using silica gel pore size 60_N (40-100 µm). Melting points were recorded with a micro-melting point apparatus. IR spectra were recorded with a JASCO-4100 Fourier transform infrared spectrophotometer. ¹H and ¹³C NMR spectroscopic data were recorded using a JEOL JNM-ECA500 instrument with tetramethyl silane as the internal standard. HPLC data were collected using the TOSOH instrument equipped with (UV-8020, DP-8020, and SD-8022) detectors using CHIRALPAK IB column. Optical rotations were recorded using a JASCO DIP-360 digital polarimeter. High-resolution mass spectrometry (HRMS) data were collected by electron impact (EI) modes using Hitachi RMG-GMG and JEOL JNX-DX303 sector instruments.

2. General procedure for the Hetero Diels-Alder (HAD) reaction of isatins (6a-f) with enones (7a-e)

To a solution of the corresponding isatins **6a-f** (0.2 mmol, 1 eq.) and enones **7a-e** (0.8 mmol, 4 eq.) in anhydrous toluene (0.3 mL) were added catalysts **2a-e** or **4a-e** (0.04 mmol, 20 mol%) and co-catalysts **5a-k** (0.08 mmol, 40 mol%) at room temperature and the mixture were stirred at that temperature for 48 h. The mixture was purified by flash column chromatography (SiO₂: hexane/ethyl acetate, 7:3) to afford the corresponding major HDA adducts **8a-j**⁹. The diastereoselectivity (*dr*) of the obtained HDA adducts were determined by the crude reaction mixture by ¹H-NMR.⁹ The enantiomeric excess (ee) of **8a-j** were determined by HPLC (CHIRALPAK-IB, hexane/*i*-PrOH = 70:30, 90:10 and 95:5, 1.0mL and 0.6mL/min, λ = 245 nm).⁹

3. Large scale synthesis of 8a using Hetero Diels-Alder (HAD) reaction of isatins (6a) with enones (7a)

To a solution of the corresponding isatins **6a** (6.79 mmol, 1 eq.) and enones **7a** (27.1 mmol, 4 eq.) in anhydrous toluene (15 mL) were added catalysts **2a** and (1.35 mmol, 20 mol%) and co-catalysts **5c** (2.71 mmol, 40 mol%) at room temperature and the mixture were stirred at that temperature for 48 h. The mixture was purified by column chromatography (SiO₂: hexane/ethyl acetate, 7:3) to afford the corresponding major HDA adducts **8a**⁹ as a pale yellow amorphous solid (1.52g, 87% yield, dr= 80:20 and major diastereomer 85% ee). The diastereoselectivity (*dr*) of the obtained HDA adducts were determined by the crude reaction mixture by ¹H NMR. The enantiomeric excess (ee) of **8a** were determined by HPLC (CHIRALPAK-IB, hexane/*i*-PrOH = 90:10 1.0mL /min, $\lambda = 245$ nm).⁹

4. High Performance Liquid Chromatography (HPLC) data of HDA adducts (8a-i)

(2*S*,6*R*)- 6'-propyl-5',6'-dihydrospiro(indoline-3,2'-pyran)-2,4'(3'*H*)-dione (8a): Daicel chiralpak IB, hexane/*i*-PrOH = 70/30, 1.0ml/min, λ =254 nm).

S.NO		Rt(min)	Area	Area %	Height	NTP	Symmetry	Resolution
00	1	26.07	3969172.8	27.73	88773	7046.8	1.867	2.08
	2	28.94	3728728.6	26.0502	69566	5842.6	2.175	1.706
	3	31.55	3214591.4	22.4583	57734	6635.2	1.939	2.26
	4	35.49	3401132.4	23.7615	49149	5368.5	2.113	* * * * *
			14313625.2	100	265222			

Chiral 8a + diastereomer

(2*S*,6*R*)- (5-methyl-6'-propyl-5',6'-dihydrospiro(indoline-3,2'-pyran)-2,4'(3'*H*)-dione (8b): HPLC (Daicel chiralpak IB, hexane/*i*-PrOH = 90/10, 0.6ml/min, λ =254 nm)

Racemic 8b + diastereomer

Chiral 8b + distereomer

S.NO	Rt(min)	Area	Area %	Height	NTP	Symmetry	Resolution
1	17.45	1213559	2.5552	83185	32350	****	0.577
2	17.91	45497860	95.7991	984894	3401.2	****	3.11
3	21.35	781560.9	1.6456	21130	7342.4	1.559	****
		47492979	100	1089209			

Racemic 8b: after separation of minor diastereomer

S.NO	Rt(min)	Area	Area %	Height	NTP	Symmetry	Resolution
1	18.72	3941972	50.4765	101149	4813.2	1.81	2.648
2	21.73	3867546	49.5235	89525	5296.2	1.948	****
		7809518	100	190674			

Chiral 8b

Resolution	Symmetry	NTP	Height	Area %	Area	Rt(min)	S.NO
3.04	1.972	4918.3	205808	93.0814	7832636	18.48	1
****	1.444	6102.4	14366	6.9186	582190.6	21.78	2
			220174	100	8414826		

(2*S*,6*R*)-4-chloro-6'-propyl-5',6'-dihydrospiro(indoline-3,2'-pyran)-2,4'(3'*H*)-dione (8d): HPLC (Daicel chiralpak IB, hexane/*i*-PrOH = 90/10, 0.6ml/min, λ =254 nm)

(2*S*,6*R*)- (5-Bromo-6'-propyl-5',6'-dihydrospiro(indoline-3,2'-pyran)-2,4'(3'*H*)-dione (8e): HPLC (Daicel chiralpak IB, hexane/*i*-PrOH = 90/10, 1.0ml/min, λ =254 nm)

Racemic 8e + diastereomer

Chiral 8e + diastereomer

S.NO	Rt(min)	Area	Area %	Height	NTP	Symmety	Resolution
1	12.63	1383292	8.4274	57945	6331.3	1.494	1.562
2	13.76	11117674	67.7321	365975	4638.6	2.114	2.597
3	15.93	3337446	20.3327	102534	5417.8	****	0.905
4	16.61	575775.4	3.5078	24008	10849.9	****	****
		16414187	100	550462			

Racemic 8e after separation of minor diastereomer

3.826 ****

(2S,6R)- 6-chloro-6'-propyl-5',6'-dihydrospiro(indoline-3,2'-pyran)-2,4'(3'H)-dione (8f): HPLC (Daicel chiralpak IB, hexane/*i*-PrOH = 90/10, 1.0ml/min, λ =254 nm)

Racemic 8f + diastereomer

S.NO	Rt(min)	Area	Area %	Height	NTP	Symmetry	Resolution
1	12.18	493221.5	4.3038	16763	3874	****	1.415
2	13.16	1066845	9.3091	46753	7523.3	****	0.894
3	13.82	5544759	48.3828	169718	4047.5	****	1.761
4	15.35	4355363	38.0043	132738	4952.6	2.012	****
		11460188	100	365972			

1.892

0.623

2.108

Chiral 8f + diastereomer

Racemic 8f after separation of minor diastereomer

Chiral 8f

2

15.3

Resolution	Symmetry	NTP	Height	Area %	Area
2.156	2.051	4257.3	140767	93.2789	4161655
****	1.553	5630.9	10129	6.7211	299865.2
			150896	100	4461520

(2*S*,6*R*)- 6'-hexyl-5',6'-dihydrospiro(indoline-3,2'-pyran-2,4')(3'*H*)-dione (8g): HPLC (Daicel chiralpak IB, hexane/*i*-PrOH = 90/10, 1.0ml/min, λ =254 nm)

Racemic 8g + diastereomer

Racemic 8g after separation of minor diastereomer

(2S,6R)- 6'-(but-3-en-1-yl)-5',6'-dihydrospiro(indoline-3,2'-pyran)-2,4'(3'H)-dione (8h): HPLC (Daicel chiralpak IB, hexane/*i*-PrOH = 90/10, 1.0ml/min, λ =254 nm)

1.367

1.74 ****

Chiral 8h + diastereomer

Racemic 8h after separation of minor diastereomer

(2*S*,6*R*)- 6'-(isopropyl)-5',6'-dihydrospiro(indoline-3,2'-pyran)-2,4'(3'*H*)-dione (8i): HPLC (Daicel chiralpak IB, hexane/*i*-PrOH = 95/5, 0.6ml/min, λ =254 nm)

Chiral 8i + diastereomer

Racemic 8i after separation of minor diastereomer

5. ¹H NMR and ¹³C NMR spectrum of compounds 8a-i

¹³C NMR Spectra of 8a

¹H NMR Spectra of 8b

¹³C NMR Spectra of 8b

¹H NMR Spectra of 8c

¹³C NMR Spectra of 8c

¹H NMR Spectra of 8d

¹³C NMR Spectra of 8d

¹H NMR Spectra of 8e

¹³C NMR Spectra of 8e

¹H NMR Spectra of 8f

¹³C NMR Spectra of 8f

¹H NMR Spectra of 8g

¹H NMR Spectra of 8h

¹³C NMR Spectra of 8h

¹H NMR Spectra of 8i

¹³C NMR Spectra of 8i

