Supporting Information

Hierarchical Porous LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ with Yolk-shelllike Architecture as Stable Cathode Material for Lithium-Ion Batteries

Zhen Chen^{1,2}, Dongliang Chao², Minghua Chen^{1#}, Zexiang Shen^{2#}

¹ Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), Harbin

University of Science and Technology, Harbin 150080, P. R. China.

² Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,

Nanyang Technological University, 21 Nanyang Link, 637371, Singapore

Email: zexiang@ntu.edu.sg, mhchen@hrbust.edu.cn

Figures.

Fig. S1 The pore size distribution and N_2 adsorption/desorption isotherms (insert) of (a) $Ni_{1/3}Co_{1/3}Mn_{1/3}CO_3$ and (b) YS-NCM.

Spectrum 4	Element	Weight%	Atomic%
	οк	32.79	58.27
. .	MnK	22.05	14.62
	Ni K	21.38	13.41
	Co K	23.78	13.71
	Totals	100.00	

Fig. S2 EDS elemental mapping results of YS-NCM.

Tab. S1 Comparison of electrochemical performance (capacity, rate capability and cycling stability) of the best performing NCM materials.

Ref.	Electrode	Electrode	Voltage	Specific	Rate	Cycling retention
	mass	composition	range	capacity	capability	
	loading	(NCM:binder:	/ V	/ mAh g ⁻¹	/ mAh g ⁻¹	
	/ mg/cm ²	PVDF)				
Pinecone-like	2-3	80:10:10	3.0-4.3 V;	161.6 (0.2C);	159.4 (2C);	91% (100 cycles at 0.2C);
NCM333 ¹			3.0-4.6 V;	199.9 (0.2C);	159.2 (2C);	77% (40 cycles at 0.2 C);
1D NFM333 ²	1.5	80:10:10	2.0-4.5	109 (0.1C)	40 (15C)	80% (100 cycles at 0.1C);
Dummbbell-like	1.7	85:8:7	2.5-4.5	171 (0.1C)	120.0 (7C)	87.7% (50 cycles at 0.1C);
NCM333 ³						
Hierarchical	2	80:10:10	2.5-4.5	203.6 (0.1C)	120.0 (5C)	90.3% (50 cycles at 0.1C);
microspherical						
NCM333 ⁴						
Hierarchical	1.5	80:10:10	2.5-4.5	190.1 (0.1C)	177.0 (5C);	93.9% (100 cycles at 1C);
NCM333					166.7 (10C);	92.6% (100 cycles at 2C);
nanosheets ⁵					137.7 (20C);	92.1% (100 cycles at 5C);
This work	2	80:10:10	2.5-4.5	187.1 (0.1C)	109.6 (5C);	86.0% (100 cycles at 0.1C);
					93.6 (10C);	91.1% (100 cycles at 1C);
					79.2 (15C);	93.2% (100 cycles at 2C);
					69.2 (20C);	
					64.50 (30C);	

References

- 1 Y. Shao, B. Huang, Z. Lu, Y. Liu, X. Meng, L. Du, H. Song, S. Liao, *Energy Technol.*, 2019, 7, 1800769-1800776.
- 2 S. Kalluri, W.K. Pang, K.H. Seng, Z. Chen, Z. Guo, H.K. Liu, S.X. Dou, *J. Mater. Chem. A*, 2015, **3**, 250-257.
- 3 W.-H. Ryu, S.-J. Lim, W.-K. Kim, H. Kwon, J. Power Sources, 2014, 257, 186-191.
- 4 Z. Chen, J. Wang, D. Chao, T. Baikie, L. Bai, S. Chen, Y. Zhao, T.C. Sum, J. Lin, Z. Shen, *Sci. Rep.*, 2016, 6, 25771-25781.
- 5 J. Li, X. Wang, J. Zhao, J. Chen, T. Jia, C. Cao, J. Power Sources, 2016, **307**, 731-737.