Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

1. XPS analysis

Figure S1. Evolution of the C 1s, O 1s, and N 1s XPS core-level spectra of a) CS-T, b) CS-T-PEI and c) CS-T-PEI-P.

2. Influence of pH on ion adsorption

Figure S2: Effect of pH on NO₃⁻ and Cr(VI) adsorption onto CS-T-PEI-P (Ci = 100 mg/L, V = 50 ml, m_{ads} = 0.2 g, 300 rpm).

3. Parameter effects and surface interactions

Fig. S3 shows that the sorption process was rapid during the initial stage (5 - 60 min) for all the tested concentrations. This was attributed to the high concentration gradient near the surface in the beginning of the adsorption process, which exerted a high driving force and thus favored migration of NO₃⁻ and Cr(VI) from the solution to the surface of CS-T-PEI-P. Then, the sorption rate was slower until equilibrium. The equilibrium times for NO₃⁻ and Cr(VI) adsorption were approximately 240 and 420 min, respectively. The quantity adsorbed at equilibrium for initial NO₃⁻ and Cr(VI) concentrations of 50, 100 and 150 mg/L were 8.76,

17.04 and 22.12 mg/g for nitrate and 12.45, 24.82 and 36.63 mg/g for chromium (VI), respectively. A further increase in contact time showed no increase in pollutant adsorption but it is clear that NO_3^- and Cr(VI) sequestration increased when the concentrations of initial NO_3^- and Cr(VI) increased (**Fig. S3-a**). Thus, the increase of the adsorption capacity of CS-T-PEI-P with the increase of the initial concentration may be explained by the fact that NO_3^- and Cr(VI) diffusion from the solution to the CS-T-PEI-P surface was accelerated by the gradient of pollutant concentration ¹⁻².

Figure S3: (a) Effect of contact time on the sequestration of NO₃⁻ and Cr(VI) by CS-T-PEI-P at different initial pollutant concentrations [CS-T-PEI-P dosage: 0.2 g, V = 50 mL, T = 23 ± 2 °C; shaking speed: 300 r.min⁻¹; initial pH for NO₃⁻ and Cr(VI)]; (b) intra-particle diffusion kinetics for sorption of nitrate and Cr(VI) onto CS-T-PEI-P.

4. Kinetic studies of nitrate and Chromium(VI) adsorption onto CS-T-PEI-P

The experimental data were simulated by Lagergren pseudo-first order model (Eq. (S5)), pseudo-second order model (Eq. (S6)), Elovich equation (Eq. (S7)) and intra-particle diffusion model (Eq. (S8))³⁻⁶.

$$\log (q_e - q_t) = \log q_e - k_1 \frac{t}{2.303}$$
(S5)
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(S6)
$$q_t = \frac{1}{\beta} \ln (\alpha \beta) + \frac{1}{\beta} \ln (t)$$
(S7)
$$q_t = k_{id} t^{1/2} + C_i$$
(S8)

where q_e and q_t (mg.g⁻¹) are the amounts of the adsorbate sorbed per unit weight of sorbent at equilibrium and time t (min), respectively; k_1 (min⁻¹), k_2 (g (mg.min)⁻¹), and k_{id} (g.mg⁻¹ min^{-0.5}) are the pseudo-first order rate constant, pseudo-second order equilibrium rate constant, and intraparticle diffusion rate constant, respectively; Elovich coefficients, α is the initial adsorption rate (mg (g.min)⁻¹) and β is the desorption constant (g.mg⁻¹) during any one experiment; C_i is the intercept of the plot of q_t against $t^{1/2}$, related to the thickness of the boundary layer.

	NO ₃ -			Cr(VI)			
	50 mg/L	100 mg/L	150 mg/L	50 mg/L	100 mg/L	150mg/L	
$q_{e, exp}$ (mg/g)	8.76	17.04	22.12	12.45	24.82	36.63	
Pseudo-first-order							
$k_1(\min^{-1})$	0.019	0.020	0.023	0.017	0.017	0.017	
$q_{e,cal}(mg/g)$	1.479	3.139	5.230	1.362	5.713	12.494	
R ²	0.9805	0.9596	0.9713	0.9416	0.9602	0.9778	
Pseudo-second-order							
$k_2(g/mg.min)$	0.055	0.027	0.016	0.049	0.010	0.004	
$q_{e,cal}(mg/g)$	8.803	17.123	22.272	12.500	25.063	37.175	
R ²	1.0000	1.000	1.000	1.0000	1.0000	1.0000	
Elovich							
α(mg/g.min)	7.66 x 10 ⁶	2.67 x 10 ⁶	3.30 x 10 ⁶	1.09 x 10 ⁷	1.41 x 10 ³	2.92 x 10 ²	
$\beta(g/mg)$	2.542	1.200	0.926	 1.795	0.489	0.275	

Table S1: Kinetic parameters for the adsorption of NO_3^- and Cr(VI) onto CS-T-PEI-P at different initial concentrations (V=50 mL, m_{ads}=0.2 g, 300 rpm).

R ²	0.9126	0.8878	0.9551	0.7781	0.8272	0.9023
Intra-particle diffusion						
$k_{1d}(mg/(g.min^{1/2}))$	0.262	0.588	0.587	0.499	1.749	2.663
$C_1(mg/g)$	6.542	12.217	16.516	8.707	11.310	14.158
R^2_1	0.9278	0.9103	0.9095	0.8456	0.9129	0.9729
$K_{2d}(mg/(g.min^{1/2}))$	0.009	0.022	0.031	0.005	0.036	0.085
$C_2(mg/g)$	8.588	16.611	21.543	12.342	24.075	34.861
R_2^2	0.5569	0.4688	0.5341	0.8457	0.7210	0.8211

5. Isotherm studies of nitrate and Chromium(VI) adsorption onto CS-T-PEI-P

Different models of adsorption isotherm were tested to describe how CS-T-PEI-P interact with nitrate and chromate:

$$\ln q_{e} = lnK_{F} + \frac{1}{n_{F}} lnC_{e}$$
(S9)
$$\frac{C_{e}}{q_{e}} = \frac{1}{q_{max}K_{L}} + \frac{1}{q_{max}}C_{e}$$
(S10)
$$q_{e} = BlnA + BlnC_{e}$$
(S11)
$$\ln q_{e} = lnq_{max} - B_{D}\varepsilon^{2}$$
(S12)
$$\varepsilon = RTln\left(1 + \frac{1}{C_{e}}\right)$$
(S13)
$$E = \frac{1}{\sqrt{2B_{D}}}$$
(S14)

Where $q_e \text{ (mg.g}^{-1)}$ and $C_e \text{ (mg.L}^{-1)}$ are the sorbate equilibrium concentrations in solid and the liquid phases; $q_{max} \text{ (mg.g}^{-1)}$, the monolayer capacity of the sorbent; $K_L \text{ (L.mg}^{-1)}$ is a constant of the Langmuir isotherm. $K_F \text{ (L.g}^{-1)}$ is Freundlich constant, and 1/n is the heterogeneity factor. *B* and *A* are the Temkin constants. $B_D \text{ (mol}^2/\text{kJ}^2)$ is the activity coefficient useful in obtaining the mean sorption energy *E* (kJ/mol) and \mathcal{E} is the Polanyi potential. *R* is the gas constant (J/mol K) and *T* is the temperature (K).

Figure S4: Effect of initial concentration of NO₃⁻ and Cr(VI) adsorption onto CS-T-PEI-P at equilibrium time (V = 50 mL; m_{ads} = 0.2 g; 300 rpm, initial pH).

Figure S5. Elovich kinetic models of NO_3^- (a) and Cr(VI) (b) ions adsorption onto CS-T-PEI-P (m_{ads} = 0.2 g, initial pH, 300 rpm, V = 50 mL and room Temperature).

Figure S6. Equilibrium adsorption Isotherms, (a) Freundlich, (b) Langmuir, (c) Temkin and Dubinin-Radushkevich (d) models of NO_3^- and Cr(VI) ions adsorption onto CS-T-PEI-P ($m_{ads} = 0.2$ g, initial pH, 300 rpm, V = 50 mL and room Temperature).

Isotherm models	NO ₃ -	Cr(VI)		
Freundlich				
$K_F(mg/g)(L/mg)^{1/n}$	1.479	24.747		
n _F	1.460	2.864		
R ²	0.9906	0.9923		
Langmuir				
$K_L(L/mg)$	0.007	0.221		
$q_{max}(mg/g)$	86.956	94.340		
R ²	0.9830	0.9692		
Temkin				
A(L/mg)	0.091	8.501		
B(J/mol)	16.872	13.718		
R ²	0.9679	0.9288		
Dubinin-				
Radushkevich				
$q_{max}(mg/g)$	37.040	57.916		
E (kJmol ⁻¹)	0.090	2.610		
R ²	0.7886	0.7406		

Table S2: Isotherm parameters for the adsorption of NO_3^- and Cr(VI) into CS-T-PEI-P (V=50 mL, m_{ads}=0.2 g, 300rpm).

6. Thermodynamic studies of nitrate and Chromium(VI) adsorption onto CS-T-PEI-P

Thermodynamic parameters were determined using the following equation:

$$K_{c} = \frac{C_{ad,e}}{C_{e}}$$

$$\ln K_{c} = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \quad (S17)$$

Where K_c is the distribution coefficient for the adsorption, C_{adve} is the amount of NO₃⁻ or Cr(VI) (mg) adsorbed on the adsorbent per liter of solution at equilibrium, and C_e is the equilibrium concentration (mg/L) of the pollutants in solution. *R* (8.314 J/mol K) is the universal gas constant and *T*(K) is the solution temperature.

Figure S7. Thermodynamic parameters of NO₃⁻ (a) and Cr(VI) (b) ions adsorption onto CS-T-PEI-P ($m_{ads} = 0.2$ g, initial pH, 300 rpm, V = 50 mL and C_i = 100 mg/L).

7. Adsorption thermodynamics

Table S3: Thermodynamic constants for the adsorption of NO_3^- and Cr(VI) onto CS-T-PEI-P (V=50 mL, m_{ads}=0.2 g, 300 rpm).

		ΔH°(kJ.mol ⁻¹)	$\Delta S^{\circ}(J.K^{-1}mol^{-1})$	ΔG°(kJ.mol ⁻¹)			
	R ²			296K	303K	313K	323K
NO ₃ -	0.9934	- 12.071	- 35.488	- 1.566	- 1.318	- 0.963	- 0.608
Cr(VI)	0.9957	66.677	266.139	-12.100	- 13.963	- 16.624	- 19.285

References:

- 1. L. You, et al., *International Journal of Biological Macromolecules*, 2018, **107**, 1620-1628.
- 2. L. Xia, et al., *Polymers*, 2018, **10**, 931.
- 3. S. Lagergren, Kungliga Svenska Vetenskapsakad Handl. ,1898, 24, 1-39.
- 4. Y. S. Ho; G. McKay, *Process Biochemistry*, 1999, **34**, 451-465.
- 5. J. W. J. Weber; J. C. Morris, J. Sanit. Eng. Div. Proceed. Am. Soc. Civil Eng., 1963, 89, 31-59.

6. W.-H. Chen; P.-C. Kuo, *Energy*,2011, **36**, 6451-6460.