Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Studies on Asymmetric Total Synthesis of (–)-β-Hydrastine by Chiral

Epoxide Ring-Opening Cascade Cyclization Strategy

Jihui Li,^a Tianxiao Wu,^a Xinjing Song,^a Yang Zheng,^a Jiaxin Meng,^a Qiaohua Qin,^a Yongxiang Liu,^{a, b, c} Dongmei Zhao,*^a Maosheng Cheng^a

^aKey Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. E-mial:medchemzhao@163.com.
^bWuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
^cInstitute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China.

Table of Contents

1.	General Information2
2.	Experimental Procedures3
3.	Natural Product Spectral Comparisons17
4.	Copies of ¹ H and ¹³ C NMR Spectra, HRMS (MS) and HPLC Spectra22
5.	References55

1. General Information

All reagents and solvents were obtained from commercial suppliers and used without further purification unless otherwise indicated. Tetrahydrofuran (THF) was freshly distilled over sodium metal under a N_2 atmosphere prior to each use. All reactions were monitored by thin layer chromatography (TLC) (250 µm thickness, F-254 indicator) and visualized by UV irradiation. Volatile solvents were removed under reduced pressure using a rotary evaporator. Flash column chromatography was performed over silica gel (200 - 300 mesh) purchased from Yantai Jiangyou Co., China.

Proton nuclear magnetic resonance (¹H NMR, 400 MHz and 600 MHz) and carbon nuclear magnetic resonance (¹³C NMR, 100 MHz and 150 MHz) spectra were recorded in CDCl₃, DMSO-*d*₆ on a Bruker ARX-600 NMR or Bruker ARX-400 NMR spectrometer with TMS as an internal standard. Chemical shifts are reported in parts per million (δ ppm) with respect to the residual solvent signal. Peak multiplicities are reported as follows: s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, m = multiplet. High resolution accurate mass spectrometer equipped with an electrospray ionization (ESI) detector. Melting points were determined with Buchi melting point B-540 and are uncorrected. Optical rotation was determined at room temperature with an MCP-200 polarimeter (Anton-Paar), sodium lamp and are reported as follows: [a]_{λ}T °C concentration (c = g / 100 mL, solvent).

The enantiomeric excess (*ee*) was determined by HPLC using a Shimadzu LC 20A series instrument equipped with UV detector. The HPLC analysis data was reported in relative area % and was not adjusted to weight %. The used chiral HPLC columns were as follows: CHIRALPAK[®] IH (0.46 cm I.D. ×15 cm L ×5 μ m), CHIRALPAK[®] IF (0.46 cm I.D. ×15 cm L ×5 μ m).

2. Experimental Procedures

The Synthesis of Substituted Styrene 6

6,7-Dimethoxyisobenzofuran-1(3H)-one (10). To a solution of 2,3-dimethoxybenzoic acid (8, 8.0 g, 43.96 mmol, 1.0 equiv.) in dibromomethane (CH₂Br₂, 96 mL) were added Pd(OAc)₂(0.49 g, 0.05 mmol) and K₂HPO₄ (19.1 g, 109.89 mmol, 2.5 equiv.). After being stirring at 96 °C for 8.0 h, the reaction mixture was cooled to room temperature and filtrated. The filtrate was washed with sat. NaCl, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield crude. The crude product was purified by column chromatography on silica gel, eluting with petroleum ether/EtOAc = 10:1 - 2:1 to yield **10** as a white solid. Yield: 66% (5.6 g). Mp: 92.8 - 96.0 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.48 (d, *J* = 8.2 Hz, 1H), 7.28 (d, *J* = 8.2 Hz, 1H), 5.26 (s, 2H), 3.89 (s, 3H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.61, 152.46, 148.58, 139.47, 119.64, 118.05, 116.51, 68.51, 62.39, 56.96. HRMS (ESI⁺): m/z calcd. for C₁₀H₁₁O₄ [M+H]⁺ = 195.0657, found 195.0642.

6-Formyl-2,3-dimethoxybenzoic acid (11). 6.22 g (30.0 mmol, 1.0 equiv.) 6,7-dimethoxyisobenzo furan-1(3*H*)-one (**10**), 6.27 g (35.0 mmol, 1.16 equiv.) NBS and 0.47 g AIBN (0.53 g, 3.0 mmol, 0.1 equiv.) were dissolved in CCl₄ (108 mL). After being heating to reflux for 4.0 h, the reaction mixture was cooled to room temperature and filtrated. The filtrate was concentrated under reduced pressure. To the residue was added 10% aq. KOH (60 mL) and heated to 40 °C for 4.0 h. After cooling the mixture to room temperature and following washing the aqueous solution with CH₂Cl₂ (2 × 20 mL), the pH is adjusted to 1.0 - 2.0 with 2 N HCl. After stirring for 1.0 h at 5 °C, the precipitate was filtered to give the crude product **11**. Yield: 75% (4.72 g). The product was used without purification in the next step. Mp: 143.6 – 145.3 °C.

Methyl 6-formyl-2,3-dimethoxybenzoate (12). To a solution of 6-formyl-2,3-dimethoxybenzoic acid (11) (8.12 g, 38.67 mmol, 1.0 equiv.) in anhydrous MeOH (93 mL) were added SOCl₂ (7.0 mL, 96.67 mmol, 2.5 equiv.) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min and then for additional 4.0 h at room temperature. After concentrating the mixture under reduced pressure, the residue was then extracted with CH_2Cl_2 (2 × 50 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel, eluting with petroleum ether/EtOAc = 8:1 – 6:1 to yield **12** as a white solid. Yield: 87% (7.54 g). Mp: 78.5 – 80.1 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.83 (s, 1H), 7.61 (d, *J* = 8.5 Hz, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 188.91, 166.91, 157.84, 146.41, 129.48, 129.18, 126.69, 112.40, 61.77,

56.19, 52.78. HRMS (ESI⁺): m/z calcd. for C₁₁H₁₃O₅ [M+H]⁺ = 225.0763, found 225.0757; calcd. for C₁₀H₉O₄ [M - OCH₃]⁺ = 193.0501, found 193.0501.

Methyl 2,3-dimethoxy-6-vinylbenzoate (6). To a cooled (0 °C), rapidly stirred suspension of methyltriphenylphosphonium iodide (14.66 g, 35.36 mmol, 2.0 equiv.) in THF (80 mL) was added KHMDS (26.5 mL of 1.0 M solution in THF, 26.52 mmol, 1.5 equiv.). The resulting bright yellow mixture was allowed to warm to room temperature and was maintained at room temperature for 0.5 h, at which time it was recooled to 0 °C and methyl 6-formyl-2,3-dimethoxybenzoate (12) (3.96 g, 17.68 mmol,1.0 equiv.) was added in four portions. The resulting mixture was allowed to warm to room temperature with stirring, and after 0.5 h the reaction was quenched with H₂O, then the mixture was concentrated *in vacuo* and extracted with EtOAc (2×50 mL). The combined organic extracts were washed with brine (50 mL), dried (Na₂SO₄), and concentrated. Purification of the residue by flash chromatography, eluting with petroleum ether/EtOAc = 10:1 - 8:1 to yield 6 as a colorless oil. Yield: 76% (3.03 g). ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, J = 8.6 Hz, 1H), 6.94 (d, J = 8.6 Hz, 1H), 6.60 (dd, J = 17.4, 11.0 Hz, 1H), 5.61 (dd, J = 17.4, 0.8 Hz, 1H), 5.22 (dd, J = 11.0, 0.8 Hz, 1H), 3.93 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.97, 152.09, 145.87, 132.94, 129.39, 128.28, 121.43, 115.11, 113.78, 61.54, 56.03, 52.37. HRMS (ESI⁺): m/z calcd. for $C_{12}H_{15}O_4$ [M+H]⁺ = 223.0970, found 223.0970; calcd. for $C_{11}H_{11}O_3$ [M - OCH₃]⁺ = 191.0708, found 191.0712.

The Synthesis of (R,R)-Catalyst 13

1,2:4,5-Di-*O***-isopropylidene-D-psicopyranose** (*14*). To the D-fructose (30.0 g, 166.7 mmol) in acetone (600 mL) was added concentrated H₂SO₄ (1.0 mL, 16.7 mmol) under N₂ after cooling to 0 °C. The resulting reaction mixture was stirred overnight at 25 °C. After neutralizing with 10% NaOH/H₂O, the reaction mixture was concentrated to a solid, which was then dissolved in CH₂Cl₂ (300 mL). The resulting solution was washed with water (3 × 150 mL) and brine (150 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated to give a white solid. After recrystallization in *n*-hexane - CH₂Cl₂ (4:1, v/v), alcohol **14** (23.7 g) was obtained as white needles. Yield: 54.6%; Mp: 118.2 – 120.5 °C, $[\alpha]_D^{25} = -153.3^\circ$ (c 1.0, acetone); ¹H NMR (600 MHz, CDCl₃) δ 4.21 (dd, J = 5.8, 2.9 Hz, 1H), 4.18 (d, J = 8.8 Hz, 1H), 4.14 (d, J = 6.9 Hz, 1H), 4.12 (dd, J = 13.3, 2.9 Hz, 1H), 4.01 (d, J = 13.3 Hz, 1H), 3.99 (d, J = 8.8 Hz, 1H), 3.67 (d, J = 6.9 Hz, 1H), 1.77 (brs, 1H), 1.54 (s, 3H), 1.52 (s, 3H), 1.45 (s, 3H), 1.37 (s, 3H). ¹H NMR data were in agreement with the described ones.¹ MS (ESI⁺): m/z [M+H]⁺=261.2.

1,2:4,5-Di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6-pyranose (13). Compound 14 (6.53 g, 25.1 mmol), Et₃BzNCl (290 mg, 1.3 mmol), NaIO₄ (8.06 g, 37.8 mmol), and K₂CO₃ (530 mg, 3.8 mmol) were vigorously stirred in a mixture of 25 mL of CHCl₃ and 25 mL of H₂O. RuCl₃ monohydrate (290 mg, 1.3 mmol) were added, and the reaction mixture was heated at 70 °C. 2-Propanol (10 mL) was added after 2 h, and the suspension was further stirred for 2 h. The reaction mixture was filtered through a Celite pad, and this material was washed with CH_2Cl_2 (2 × 20 mL). This solution was mixed with the filtrate, the organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were washed with saturated Na₂SO₃ (130 mL), brine (100 mL), and water (100 mL). The white solid was obtained after drying and evaporating the solvents. Purification of the crude product by flash chromatography, eluting with *n*-hexane - CH_2Cl_2 (4:1, v/v) to yield 13 as a white acicular solid. Yield: 59.5% (3.87 g). Mp: 97.5 – 99.9 °C, $[\alpha]_D^{25} = -124.09^\circ$ (c 1.0, acetone); ¹H NMR (600 MHz, CDCl₃) δ 4.73 (d, J = 5.6Hz, 1H), 4.61 (d, J = 9.5 Hz, 1H), 4.55 (ddd, J = 5.6, 2.2, 1.0 Hz, 1H), 4.39 (dd, J = 13.5, 2.2 Hz, 1H), 4.12 (d, J = 13.5, 1H), 4.00 (d, J = 9.5 Hz, 1H), 1.55 (s, 3H), 1.46 (s, 3H), 1.40 (s, 6H). The ¹H NMR data obtained are consistent with those reported in the literature.^{1 13}C NMR (150 MHz, CDCl₃) *b* 196.94, 113.83, 110.65, 104.14, 77.93, 75.89, 70.02, 60.10, 27.16, 26.52, 26.06, 26.02. The ${}^{13}C$ NMR data obtained are consistent with those reported in the literature.² MS (ESI⁺): m/z $[M+Na]^+ = 281.2.$

The Synthesis of (–)-β-Hydrastine

tert-Butyl (2-(benzo[d][1,3]dioxol-5-yl)ethyl)carbamate (7). NEt₃ (4.0 mL, 30.0 mmol, 1.5 equiv.) and di-*tert*-butyl dicarbonate [(Boc)₂O] (6.54 g, 30.0 mmol, 1.5 equiv.) were added to a solution of 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine (9) (3.30 g, 20.0 mmol, 1.0 equiv.) in CH₂Cl₂ (40 mL) at 0 °C. After stirring for 3.0 h at room temperature, the reaction was quenched by addition of brine at 0 °C. The mixture was then extracted with CH₂Cl₂ (2×50 mL). The combined organic layers were washed with a 10% aq. citric acid solution and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by stirring with petroleum ether and the solid was filtrated to give *N*-Boc carbamate 7 as a white solid. Yield: 97% (5.16 g). The product was used without further purification in the next step.

tert-Butyl (2-(6-iodobenzo[d][1,3]dioxol-5-yl)ethyl)carbamate (5). The *N*-Boc-protected amine 7 (5.16 g, 19.47 mmol, 1.0 equiv.) was suspended together with silver trifluoroacetate (4.4 g, 20.0

mmol, 1.02 equiv.) in CH₂Cl₂ (200 mL). After the mixture was cooled to - 10 °C, iodine (4.94 g, 19.47 mmol, 1.0 equiv.) was added slowly to maintain the temperature < - 5 °C. After being stirred for 10 min, the mixture was filtrated over Celite, the solution was washed with a saturated aqueous solution of sodium thiosulfate until decolorization and then washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield **5** as a white solid. Yield: 84% over two steps (6.37 g). The product was used without further purification in the next step. Mp: 86.7 – 88.6 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.23 (s, 1H), 6.74 (s, 1H), 5.95 (s, 2H), 4.58 (s, 1H), 3.34 – 3.28 (m, 2H), 2.85 (t, *J* = 6.9 Hz, 2H), 1.44 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 155.84, 148.55, 147.16, 134.93, 118.68, 109.88, 101.59, 87.93, 79.29, 77.25, 77.04, 76.83, 40.67, 28.44. HRMS (ESI⁺): m/z calcd. for C₂₈H₃₇I₂N₂O₁₀ [2M+H]⁺ = 783.0639, found 783.0677.

Methyl (*E*)-6-(2-(6-(2-((*tert-butoxycarbonyl*)*amino*)*ethyl*) *benzo*[*d*][1,3]*dioxol-5-yl*)*vinyl*)-2,3*dimethoxybenzoate* (4). A solution of methyl 2,3-dimethoxy-6-vinylbenzoate (6) (1.95 g, 8.78 mmol, 1.0 equiv.), *tert*-butyl (2-(6-iodobenzo[*d*][1,3] dioxol-5-yl)ethyl)carbamate (5) (3.6 g, 9.22 mmol, 1.05 equiv.), silver acetate (1.61 g, 9.66 mmol, 1.1 equiv.), and palladium acetate (0.2 g, 0.88 mmol, 0.1 equiv.) in acetic acid (25 mL) was heated at 117 °C for 1.5 h under Ar atmosphere. The resulting dark reaction mixture was poured into water (250 mL), and then extracted with CH₂Cl₂ (5 × 50 mL). The combined organic layers were washed with sat. NaHCO₃ and brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the residue by flash chromatography, eluting with petroleum ether/EtOAc = 10:1 – 5:1 to yield 4 as a light yellow oil. Yield: 76% (3.22 g). ¹H NMR (600 MHz, DMSO-*d*₆) & 7.65 (d, *J* = 8.5 Hz, 1H), 7.30 (d, *J* = 15.9 Hz, 1H), 7.13 (d, *J* = 8.8 Hz, 1H), 7.10 (s, 1H), 6.95 (t, *J* = 5.5 Hz, 1H), 6.76 (s, 1H), 6.67 (d, *J* = 15.9 Hz, 1H), 5.99 (s, 1H), 3.88 (s, 1H), 3.86 (s, 2H), 3.74 (s, 2H), 3.08 – 3.01 (m, 1H), 2.76 (t, *J* = 7.5 Hz, 1H), 1.37 (s, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) & 167.81, 156.11, 151.88, 147.46, 146.84, 145.55, 132.06, 129.46, 128.48, 127.77, 126.82, 124.17, 122.26, 114.77, 110.50, 105.13, 101.44, 78.09, 61.40, 56.50, 52.84, 46.00, 33.42, 28.72. HRMS (ESI⁺): *m/z* calcd. for C₂₆H₃₂NO₈[M+H]⁺ = 486.2128, found 486.2101.

 Table S1. Optimization of Asymmetric Epoxidation of (E)-Stilbene 4 for the Acid-Catalyzed

 Cascade Cyclization

Fature Conditions		Yeild ^b	ee ^c
Entry"	y- Conditions		(%)
1	Ketone 13 (3.0 equiv.), Oxone (5.6 equiv.), NaHCO ₃ (18.9 equiv.), CH ₃ CN-	ND	
I	CH ₂ Cl ₂ -H ₂ O (v/vv=1:4:5), 0 °C, 48 h	ND	_
r	Ketone 13 (3.0 equiv.), Oxone (5.0 equiv.), NaHCO ₃ (15.5 equiv.), Bu ₄ NHSO ₄ (5	ND	
2	mol %), CH ₃ CN-aq.Na ₂ EDTA (4×10 ⁻⁴ M) (v/v=1.5:1), 0 °C, 2.0 h	ND	_
2	Ketone 13 (5.0 equiv.), Oxone (5.0 equiv.), NaHCO ₃ (15.5 equiv.), Bu ₄ NHSO ₄ (5	ND	
3	mol %), CH ₃ CN-aq.Na ₂ EDTA (4×10 ⁻⁴ M) (v/v=1.5:1), 0 °C, 2.0 h		_
	Ketone 13 (0.3 equiv.), Oxone (2.02 equiv.), K ₂ CO ₃ 4.04 equiv.), Bu ₄ NHSO ₄ (5		
4	mol %), CH ₃ CN-DMM-buffer ^d (pH=7.0) (v/v/v=1:2:1), 0 °C, 24 h	ND	-
-	Ketone 13 (0.3 equiv.), Oxone (1.38 equiv.), K ₂ CO ₃ (5.8 equiv.), Bu ₄ NHSO ₄ (5	ND	
5	mol %), CH ₃ CN-DMM-buffer ^e (v/v/v=1:2:2), 0 °C, 1.5 h	ND	-
(Ketone 13 (1.6 equiv.), Oxone (1.6 equiv.), K ₂ CO ₃ (6.74 equiv.), Bu ₄ NHSO ₄ (5	ND	
0	mol %), CH ₃ CN-DMM-buffer ^e (v/v/v=1:2:2), 0 °C, 1.5 h	ND	_
7	Ketone 13 (2.0 equiv.), Oxone (1.6 equiv.), K ₂ CO ₃ (6.74 equiv.), Bu ₄ NHSO ₄ (5	ND	
/	mol %), CH ₃ CN-DMM-buffer ^e (v/v/v=1:2:2), 0 °C, 1.5 h	ND	_
8	Ketone 13 (3.0 equiv.), Oxone (1.6 equiv.), K ₂ CO ₃ (6.74 equiv.), Bu ₄ NHSO ₄ (5	ND	
0	mol %), CH ₃ CN-DMM-buffer ^e (v/v/v=1:2:2), 0 °C, 1.5 h		_
9	Ketone 13 (3.0 equiv.), Oxone (1.6 equiv.), K ₂ CO ₃ (6.74 equiv.), Bu ₄ NHSO ₄ (5	tracef	_
)	$(1.6 \text{ equiv.}), \text{ K}_2\text{CO}_3(6.74 \text{ equiv.}), \text{ Bu}_4\text{NHSO}_4(5)$		
10	Ketone 13 (1.6 equiv.), Oxone (1.6 equiv.), K ₂ CO ₃ (6.74 equiv.), Bu ₄ NHSO ₄ (5	tracef	_
10	mol %), CH ₃ CN-DMM-buffer ^e (v/v/v=1:2:2), -10 °C, 2 h	uuce	
11	Ketone 13 (1.6 equiv.), Oxone (1.38 equiv.), K ₂ CO ₃ (5.8 equiv.), Bu ₄ NHSO ₄ (5	tracef	_
	mol %), CH ₃ CN-DMM-buffer ^e (v/v/v=1:2:2), -10 °C, 2 h		
12 ^g	Ketone 13 (0.3 equiv.), Oxone (1.38 equiv.), K ₂ CO ₃ (5.8 equiv.), Bu ₄ NHSO ₄ (5	tracef	_
	mol %), CH ₃ CN-buffer ^{<i>e</i>} (v/v=3:2), 0 °C to rt, 24 h		
13	Ketone 13 (3.0 equiv.), Oxone (1.38 equiv.), K ₂ CO ₃ (5.8 equiv.), Bu ₄ NHSO ₄ (5	trace ^h	_
	mol %), CH ₃ CN-bufer ^e (v/v=3:2), 0 °C to rt, 24 h		
14 ^{<i>i</i>}	Ketone 13 (3.0 equiv.), Oxone (4.6 equiv.), K ₂ CO ₃ (18.6 equiv.), Bu ₄ NHSO ₄ (5	42	86
	mol %), CH ₃ CN-buffer ^e (v/v=3:2, 25 mL), 0 °C 4.5 h		
15 ^{<i>i</i>}	Ketone 13 (1.0 equiv.), Oxone (4.6 equiv.), K_2CO_3 (18.6 equiv.), Bu_4NHSO_4 (5	24	79
	mol %), CH ₃ CN-buffer ^e (v/v=3:2, 25 mL), 0 °C 8 h		
16	Ketone 13 (3.0 equiv.), 30% H_2O_2 (30 equiv.), CH_3CN -buffer ^k (v/v=2:1), 0 °C 36 h	25	58
1 <i>7</i> ^j	Ketone 13 (3.0 equiv.), 30% H ₂ O ₂ (30 equiv.), CH ₃ CN-EtOH-CH ₂ Cl ₂ ,	40	71
1 /2	(v/v/v=1:1:2), buffer ^l , 0 °C 36 h		

^{*a*}Substrate **4** (0.1 mmol). ^{*b*}Isolated yield of (–)- α -2. ^{*c*}The enantiomeric excess was determined by chiral HPLC (Chiralpak IH). ^{*d*}Buffer: 0.05 M aq.Na₂HPO₄-0.05 M aq.KH₂PO₄, pH=7.0. ^{*e*}Buffer: 0.05 M Na₂B₄O₇•10 H₂O of aqueous Na₂EDTA (4×10⁻⁴ M) solution. ^{*f*}Most of the starting material was recovered. ^{*g*}Substrate **4** (1 mmol). ^{*b*}Most of the epoxide (*R*,*R*)-3 was decomposed. ^{*i*}Substrate **4** (0.3 mmol). ^{*j*} Substrate **4** (0.4 mmol). ^{*k*}Buffer: 1.0 M K₂CO₃ in 4×10⁻⁴ M of EDTA.

General Experimental Procedure for studies summarized in Tables S1 (entries 1-15) and focused on optimizing the formation of [(R,R)-3].

To a three-neck round-bottom flask were added the mixed solvent (entry 1) or the mixed solvent

and buffer (entries 2-15), compound **4** (0.1 mmol, 1.0 equiv.), tetrabutylammonium hydrogen sulfate (15 mg). The reaction mixture was cooled to 0 °C or -10 °C. Then, the solid Oxone, NaHCO₃, ketone **13** were added in portions (entry 1) or a solution of Oxone in aqueous Na₂(EDTA) (4 × 10⁻⁴ M), a solution of K₂CO₃ in water and a solution of ketone **13** in acetonitrile were added in dropwise through three separate addition funnels. The reaction was stirred for the corresponding reaction time, and monitored by TLC. The crude product (*R*,*R*)-3 was directly used for the following acid-catalyzed cascade cyclization. The results were analyzed by chiral HPLC (Chiralpak IH).

General Experimental Procedure for studies summarized in Tables S1 (entries 16-17) and focused on optimizing the formation of [(R,R)-3].

To a solution of compound 4 (0.4 mmol, 1.0 equiv.) in the solvent was add the buffer followed by ketone 13 (0.4 mmol, 1.0 equiv.) and 30% H_2O_2 (4.0 equiv.) at 0 °C. Upon stirring at 0 °C for 12 h, additional ketone 13 (0.4 mmol, 1.0 equiv.) and 30% H_2O_2 (4.0 equiv.) were added and the mixture was stirred at 0 °C for another12 h. And then ketone 13 (0.4 mmol, 1.0 equiv.) and 30% H_2O_2 (4.0 equiv.) were added in again for stirring the last 12 h. The reaction was then monitored by TLC to follow the reaction to completion, and quenched by addition of aq. Na₂S₂O₃. The mixture was extracted with CH₂Cl₂, washed with brine, dried over Na₂SO₄. The solvent was removed under vacuum to give crude product (*R*,*R*)-3, which was directly used for the next step. The results were analyzed by chiral HPLC (Chiralpak IH).

Methyl 6-((2R,3R)-3-(6-(2-((tert-butoxycarbonyl)amino)-ethyl)benzo[d][1,3]dioxol-5-yl)oxiran-2-yl)-2,3-dimethoxy-benzoate [(R,R)-3]. To a 100 mL three-neck round-bottom flask were added buffer (0.05 M Na₂B₄O₇•10H₂O in 4 × 10⁻⁴ M aqueous Na₂(EDTA), 10 mL), acetonitrile (15 mL), compound 4 (120 mg, 0.3 mmol, 1.0 equiv.), tetrabutylammonium hydrogen sulfate (15 mg). The reaction mixture was cooled with an ice bath. A solution of Oxone (0.85 g, 1.38 mmol) in aqueous Na₂(EDTA) (4 × 10⁻⁴ M, 6.5 mL), a solution of K₂CO₃ (0.8 g, 5.8 mmol) in water (6.5 mL) and a solution of ketone 13 (0.23 g, 0.9 mmol) in acetonitrile (3.0 mL) were added dropwise through three separate addition funnels over a period of 4.5 h. The reaction was then monitored by TLC to follow the reaction to completion, and quenched by addition of water (20 mL). The mixture was extracted with CH₂Cl₂ (3 × 20 mL), washed with brine (3 × 20 mL), dried over Na₂SO₄. The solvent was removed under vacuum to give crude product (*R*,*R*)-3 (≈ 150 mg, ≈ 0.3 mmol, > 95% crude yield), which was directly used for the next step.

(-)-a-N-demethyl Hydrastine [(-)-a-2, threo-form]. To a stirred solution of the above epoxide

(*R*,*R*)-3 (\approx 0.3 mmol) in CH₂Cl₂ (30 mL) at 0 °C was added CF₃CO₂H (0.55 mL, 7.5 mmol, 30 equiv.). Upon stirring at 0 °C for 3.0 h (the epoxide was consumed as judged by TLC), Additional CF₃CO₂H (2.2 mL, 120.0 mmol, 4 × 30 equiv.) was added to the reaction mixture at 0 °C. After stirring for additional 3.0 h at room temperature, the reaction mixture was concentrated and redissolved in CH₂Cl₂ (20 mL) and water (10 mL). The mixture was adjusted to pH = 8.0 – 9.0 with ammonium hydroxide and then extracted with CH₂Cl₂ (20 mL × 3). The combined organic layer was washed with brine (20 mL × 3) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give crude product (–)- α -2 (\approx 110 mg, > 99% crude yield), which was directly used for the next step.

For the analysis, small amounts of the crude (*R*,*R*)-3 (50 mg, 0.1 mmol) were converted to (–)- α -2 in above conditions and purified by preparative thin layer chromatography (PTLC, CH₂Cl₂/MeOH= 100:1) to give (–)- α -2 (15.4 mg) as a light yellow solid. Yield: 42.1% for two steps, **86%** *ee* (Chiralpak IH column, *n*-Hexane/Ethanol/Diethylamine = 40:60:0.1, 220 nm, 0.8 mL/min, 35 °C, t_{major} = 5.537 min, t_{minor} = 7.569 min). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.2 Hz, 1H), 7.12 (dd, *J* = 8.2, 0.6 Hz, 1H), 6.71 (s, 1H), 6.56 (s, 1H), 5.90 (dd, *J* = 6.7, 1.4 Hz, 2H), 5.69 (d, *J* = 2.9 Hz, 1H), 5.35 (t, *J* = 4.6 Hz, 1H), 4.42 (d, *J* = 3.0 Hz, 1H), 4.10 (s, 3H), 3.91 (s, 3H), 3.20 (dt, *J* = 12.0, 5.2 Hz, 1H), 2.90 (ddd, *J* = 12.2, 7.9, 4.6 Hz, 1H), 2.83 – 2.66 (m, 1H), 2.60 (dt, *J* = 15.9, 5.0 Hz, 1H). HRMS (ESI⁺): *m/z* calcd. for C₂₀H₂₀NO₆ [M+H]⁺ = 370.1291, found 370.1277.

(-)-α-Hydrastine (threo-form)

(-)- α -Hydrastine (threo-form). To a stirred solution of the above crude product (-)- α -2 (≈ 0.3 mmol, 1.0 equiv.) in HCOOH (2.5 mL) was added 37% HCHO (1.5 mL). After the reaction mixture was heated to reflux and stirred for 30 min (detected by TLC), the reaction mixture was concentrated and the resulting residue was stirred with water ($\approx 10 \text{ mL}$) and CH₂Cl₂ (20 mL), adjusted to pH = 9.0 - 10.0 with ammonium hydroxide, and then extracted with CH₂Cl₂ (20 mL \times 3). The combined organic layer was washed with brine (20 mL \times 3) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give crude product Hydrastine, which was purified by preparative thin layer chromatography (silica gel), eluting with $CH_2Cl_2/MeOH=100:1$ to give (-)- α -Hydrastine [threo-form] (28.0 mg) as a white solid. Yield: 29.6% over three steps from compound 4. Mp: 153.2 $-155.0 \,^{\circ}\text{C}, \, [\alpha]_{\text{D}}^{25} = -123.5^{\circ} \, (c \, 0.5, \, \text{CH}_2\text{Cl}_2) \, (\text{lit}^1 = 162.0 - 163.5 \,^{\circ}\text{C}, \, [\alpha]_{\text{D}}^{25} = -141^{\circ}); \, ^1\text{H NMR}$ $(600 \text{ MHz}, \text{CDCl}_3) \delta 7.27 \text{ (d, } J = 8.2 \text{ Hz}, 1\text{H}), 7.04 \text{ (d, } J = 8.2 \text{ Hz}, 1\text{H}), 6.64 \text{ (s, 1H)}, 6.37 \text{ (s, 1H)}, 6.71 \text{ (s, 1H)}, 6.64 \text{ (s, 1H)}, 6.71 \text{ (s, 1H)}, 6.64 \text{ (s, 1H)}, 6.71 \text{ (s, 1H)}, 6.64 \text{ (s, 1H)}, 6.71 \text{ (s, 1H)$ 5.83 (d, J = 1.0 Hz, 1H), 5.78 (s, 1H), 5.55 (d, J = 2.8 Hz, 1H), 4.01 (d, J = 2.3 Hz, 1H), 3.98 (s, 3H), 3.84 (s, 3H), 3.16 – 3.00 (m, 1H), 2.85 – 2.65 (m, 1H), 2.56 (s, 3H), 2.53 (d, J = 9.9 Hz, 1H), 2.46 (d, J = 15.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 167.89, 152.24, 147.67, 146.25, 145.78, 140.94, 129.81, 125.10, 119.24, 118.22, 117.99, 108.14, 107.38, 100.74, 80.89, 66.22, 62.30, 56.72, 51.26, 44.93, 29.14. HRMS (ESI⁺): m/z calcd. for C₂₁H₂₂NO₆ [M+H]⁺ = 384.1447, found 384.1435.

(-)- α -Hydrastine epimerized to (-)- β -Hydrastine. To a stirred solution of the above (-)- α -Hydrastine (110 mg, 0.3 mmol, 1.0 equiv.) in MeOH (16 mL) was added MeOK (1.33 g, 18.9 mmol, 65.8 equiv.). After the reaction mixture was stirred at room temperature for 22 h (detected by TLC), the reaction mixture was diluted with water (5.0 mL) and concentrated, the resulting residue was adjusted to pH = 2.0 with 2 N HCl at 0 °C, then stirred at room temperature for 30 min. The aqueous layer was adjusted to pH = 9.0 with ammonium hydroxide and then extracted with CH_2Cl_2 (20 mL \times 3). The combined organic layer was washed with brine (20 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give crude product (-)- β -Hydrastine, which was purified by column chromatography (silica gel), eluting with petroleum ether/EtOAc = 2:1 (0.15% Et₃N) to give (-)- β -Hydrastine (71.0 mg) as a light yellow solid. Yield: 64.5%, 81% ee (Chiralpak IF column, n-Hexane/Ethanol/Diethylamine = 30:70:0.1, 220 nm, 1.0 mL/min, 35 °C, $t_{major} = 5.868 \text{ min}$, $t_{minor} = 7.317 \text{ min}$). Mp: 125.4 – 128.2 °C, $[\alpha]_D^{25} = -77.3^\circ$ (c 0.5, CH₂Cl₂) (lit¹ M.p. 132 °C, $[\alpha]_D^{25} = -68^\circ$). ¹H NMR (600 MHz, CDCl₃) δ 7.08 (d, J = 8.2 Hz, 1H), 6.58 (s, 1H), 6.54 (d, J = 8.1 Hz, 1H), 6.36 (s, 1H), 5.91 (dd, J = 4.6, 1.4 Hz, 2H), 5.51 (d, J = 2.4 Hz, 1H), 4.06 (s, 3H), 4.00 (d, J = 3.7 Hz, 1H), 3.89 (s, 3H), 2.92 (t, J = 13.1 Hz, 1H), 2.68 – 2.57 (m, 2H), 2.56 (s, 3H), 2.35 – 2.25 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 167.69, 152.54, 148.01, 146.78, 145.78, 140.70, 130.24, 124.46, 119.64, 118.61, 117.63, 108.54, 107.77, 100.87, 82.86, 66.11, 62.33, 56.81, 48.96, 44.74, 26.54. HRMS (ESI+): m/z calcd. for C₂₁H₂₂NO₆ [M+H]+ = 384.1447, found 384.1433.

The Syntheses of (E)-stilbenes 16a-c

N-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-2,2,2-trifluoroacetamide (14a). NEt₃ (6.0 mL, 45.0 mmol, 2.2 equiv.) was added to a solution of 2-(benzo[*d*][1,3]dioxol-5-yl)ethan-1-amine (9) (3.30 g, 20.0 mmol, 1.0 equiv.) in CH₂Cl₂ (40 mL). After cooling the mixture to - 20 °C, trifluoroacetic anhydride (3.1 mL, 22.0 mmol,1.1 equiv.) was dropped slowly. After that, the reaction mixture was stirred at - 20 °C for 1.0 and then at room temperature for 3.5 h. After the reaction was complete, the reaction was quenched by addition of water at 0 °C and extracted with CH₂Cl₂ (2 × 50 mL). The combined organic layers were washed with water, a 10% aq. citric acid solution and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by stirring with petroleum ether and the solid was filtrated to give **14a** as a white solid. Yield: 95% (4.96 g). The product was used without further purification in the next step.

Referring the general procedures for the preparation of 7, N-protected **14b** and **14c** were smoothly synthesized. The crude product **14b** and **14c** were used without further purification in the next step.

The general procedures for the preparation of **15a**, **15b** and **15c** were as same as those of the preparation of **5**.

2,2,2-Trifluoro-N-(2-(6-iodobenzo[d][1,3]dioxol-5-yl)ethyl)acetamide (15a): White solid, yield: 82.3% over two steps; Mp: 129.6 − 132.8 °C; ¹H-NMR (600 MHz, CDCl₃) δ 7.25 (s, 1H), 6.72 (s, 1H), 6.34 (s, 1H), 5.98 (s, 2H), 3.58 (q, *J* = 6.8 Hz, 2H), 2.96 (t, *J* = 7.1 Hz, 2H). MS (ESI⁺): *m/z* [M+Na]⁺ = 409.9.

N-(2-(6-iodobenzo[d][1,3]dioxol-5-yl)ethyl)-4-(trifluoromethyl)benzenesulfonamide (15b): White solid, yield: 88.0% over two steps; Mp: 121.0 – 122.8 °C; ¹H-NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.3 Hz, 2H), 7.15 (s, 1H), 6.63 (s, 1H), 5.94 (s, 2H), 4.64 (t, J = 6.1 Hz, 1H), 3.24 (q, J = 6.9 Hz, 2H), 2.85 (t, J = 7.0 Hz, 2H). ¹³C-NMR (150 MHz, CDCl₃) δ 148.67, 147.55, 143.58, 134.46, 134.24, 133.20, 127.56, 126.61 – 126.11 (m), 122.33, 118.84, 109.92, 101.77, 87.85, 43.16, 40.43. HRMS (ESI⁺): m/z calcd. for C₁₆H₁₂F₃INO₄S [M-H]⁻ = 497.9489, found 497.9513.

N-(2-(6-iodobenzo[d][1,3]dioxol-5-yl)ethyl)methanesulfonamide (15c): White solid, yield: 79.0% over two steps; Mp: 132.8 – 134.4 °C; ¹H-NMR (600 MHz, CDCl₃) δ 7.24 (s, 1H), 6.78 (s, 1H), 5.97 (s, 2H), 4.35 (s, 1H), 3.35 (dd, *J* = 13.6, 6.8 Hz, 2H), 2.94 (t, *J* = 7.0 Hz, 2H), 2.91 (s, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 148.75, 147.60, 133.57, 118.88, 110.12, 101.79, 87.89, 43.19, 41.03, 40.54. HRMS (ESI⁻): *m/z* calcd. for C₁₀H₁₁INO₄S [M-H]⁻ = 367.9459, found 367.9464.

The general procedures for the preparation of **16a**, **16b** and **16c** were as same as those of the preparation of **4**.

Methyl (*E*)-2,3-dimethoxy-6-(2-(6-(2-(2,2,2-trifluoroacetamido)ethyl)benzo[d][1,3]dioxol-5yl)vinyl)benzoate (16a): light yellow oil, yield: 67.5%; ¹H-NMR (600 MHz, DMSO- d_6) δ 7.61 (d, J = 8.7 Hz, 1H), 7.25 (d, J = 15.8 Hz, 1H), 7.19 (d, J = 8.8 Hz, 1H), 7.11 (s, 1H), 6.79 (s, 1H), 6.69 (d, J = 15.9 Hz, 1H), 6.01 (s, 2H), 3.88 (s, 3H), 3.87 (s, 3H), 3.74 (s, 3H), 3.30 (m, 2H), 2.91 – 2.85 (m, 2H). ¹³C-NMR (151 MHz, CDCl₃) δ 168.43, 157.33 (d, J = 36.9 Hz), 152.04, 147.60, 147.23, 146.13, 130.17, 129.36, 128.09, 127.86, 126.30, 125.98, 122.10, 116.76, 114.44 (d, J = 126.1 Hz), 109.90, 106.03, 101.26, 61.53, 56.05, 52.52, 40.96, 32.59. MS (ESI⁺): *m/z* [M+Na]⁺ = 504.3.

Methyl (*E*)-2,3-dimethoxy-6-(2-(6-(2-((4-(trifluoromethyl)phenyl)sulfonamido)ethyl)benzo[d] [1,3]dioxol-5-yl)vinyl)benzoate (16b): light yellow oil, yield: 75.0%; ¹H-NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.36 (t, J = 8.0 Hz, 1H), 7.04 (d, J = 15.9 Hz, 1H), 6.99 (d, J = 8.6 Hz, 1H), 6.94 (s, 1H), 6.70 (d, J = 15.9 Hz, 1H), 6.55 (s, 1H), 5.97 – 5.93 (m, 2H), 4.75 (t, J = 6.2 Hz, 1H), 3.95 (s, 3H), 3.90 (s, 3H), 3.89 (s, 3H), 3.13 (dd, J = 13.9, 6.9 Hz, 2H), 2.89 (t, J = 7.3 Hz, 2H). ¹³C-NMR (150 MHz, DMSO- d_6) δ 167.79, 152.00, 147.44, 146.99, 145.57, 144.74, 132.60, 130.99, 129.50, 128.49, 127.77, 127.60, 126.77 (d, J = 3.6 Hz), 126.57, 124.68, 122.10, 114.89, 110.67, 105.33, 101.51, 61.37, 56.51, 52.82, 44.16, 33.33. HRMS (ESI⁺): m/z calcd. for C₂₈H₂₆F₃NO₈SNa [M+Na]⁺ = 616.1229, found 616.1230.

Methyl (*E*)-2,3-dimethoxy-6-(2-(6-(2-(methylsulfonamido)ethyl)benzo[d][1,3]dioxol-5-yl)vinyl) benzoate (16c): light yellow oil, yield: 73.0%; ¹H-NMR (600 MHz, CDCl₃) δ 7.39 (d, J = 8.6 Hz, 1H), 7.11 (d, J = 15.9 Hz, 1H), 7.02 (s, 1H), 6.99 (d, J = 8.6 Hz, 1H), 6.75 (d, J = 15.8 Hz, 1H), 6.67 (s, 1H), 5.96 (s, 2H), 4.38 (t, J = 6.7 Hz, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 3.29 (dd, J = 13.6, 7.0 Hz, 2H), 2.95 (t, J = 7.2 Hz, 2H), 2.87 (s, 3H). ¹³C-NMR (150 MHz, DMSO- d_{δ}) δ 167.81, 151.95, 147.52, 147.00, 145.55, 131.48, 129.56, 128.48, 127.66, 126.69, 124.59, 122.19, 114.91, 110.70, 105.29, 101.52, 61.40, 56.51, 52.87, 44.21, 33.83. HRMS (ESI⁺): m/z calcd. for $C_{22}H_{25}NO_8SNa$ [M+Na]⁺ = 486.1199, found 486.1188.

General procedures for the preparation of racemic model substrates $[(\pm)-17]$ for the basecatalyzed cascade cyclization. To the stirred mixture of compound 16 (0.1 mmol, 1.0 equiv), NaHCO₃ (1.89 mmol, 18.9 equiv), H₂O (2.5 mL), CH₂Cl₂ (2.0 mL), and acetone (0.5 mL) was added Oxone (0.56 mmol, 5.6 equiv) at 0 °C in portions. The reaction was then monitored by TLC to follow the reaction to completion, quenched with water (3.0 mL), and extracted with CH₂Cl₂ (5 mL×3). The combined organic layer was then washed with brine (10 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give crude product (\pm)-17, which was directly used for the next step. During the isolation process, we found that the epoxides $[(\pm)-17]$ were prone to decomposition. To address this issue, a two-step procedure was developed in which the epoxidation and cascade cyclizations were performed sequentially with only one isolation operation at the end (Table S2).

General Experimental Procedure for studies summarized in Tables S2 and focused on optimizing the formation of $[(\pm)-\beta-18]$.

To a flame dried, N_2 flushed three-neck round-bottom flask, a stir bar and the starting substrate **16** (0.1 mmol) was placed and dissolved in the solvent (2.0 mL) at 0 °C. Then the base was added in dropwise (or in portion). The reaction was stirred for 12 h (unless noted otherwise) at the corresponding reaction temperature.

Table S2. Optimization of Racemic Model Substrates $[(\pm)-17]$ for the Base-Catalyzed Cascade Cyclization

Entry ^a	17	Base (equiv.)	Solvent	Temp.	T (h)	Yield ^b (%)
		× • /		(°C)		. ,
1	17a	60% NaH (2.5)	1,4-Dioxane	0 - 65	12	_c
2	17a	KHMDS (1.2)	1,4-Dioxane	0 - 65	12	ND^d
3	17a	KHMDS (1.2)	1,4-Dioxane	0 - 84	12	$\Box _^c$
4	17a	KHMDS (1.2)	dry THF	0 - 65	12	ND^d
5	17a	KHMDS (1.2)	dry THF	0 - rt	12	ND^d
6	17a	LDA (1.2)	dry THF	0 - 65	12	$\Box _^c$
7	17a	<i>n</i> -BuLi (1.2)	dry THF	-78 - rt	12	$\Box _c$
8	17b	KHMDS (1.2)	dry THF	0 - 65	12	11
9	17b	KHMDS (1.5)	1,4-Dioxane	0 - 65	12	10
10	17b	KHMDS (1.5)	dry THF	0 - 65	5.0	30
11	17c	KHMDS (1.5)	dry THF	0 - 65	12	ND^d
12	17c	NaHMDS (1.5)	dry THF	0 - 65	12	ND^d
13	17c	KHMDS (1.5)	1,4-Dioxane	0 - 84	12	$\Box _c$
14	17c	60% NaH (2.5)	1,4-Dioxane	0 - 65	12	15
15	17c	60% NaH (2.5)	1,4-Dioxane	0 - 65	24	10
16	17c	60% NaH (2.5)	1,4-Dioxane	0 - 60	12	16
17	17c	60% NaH (1.5)	1,4-Dioxane	0 - 60	5.0	19

^{*a*}The substrate **16** (0.1 mmol) was dissolved in solvent and then the base was added in dropwise. ^{*b*}Isolated yield of (\pm)- β -**18** in two steps. ^{*c*}Most of the epoxide (\pm)-**17** was decomposed. ^{*d*}The (\pm)- β -**18** was not detected by TLC and the epoxide (\pm)-**17** was recovered. NaHMDS = Sodium bis(trimethylsilyl)amide. KHMDS = Potassium bis(trimethylsilyl)amide. LDA = Lithium diisopropylamide.

(±)-β-6,7-dimethoxy-3-(6-((4-(trifluoromethyl)phenyl)sulfonyl)-5,6,7,8-tetrahydro-[1,3]dioxolo [4,5-g]isoquinolin-5-yl)isobenzofuran-1(3H)-one. To a flame dried, N₂ flushed three-neck round-

bottom flask, a stir bar and the starting substrate 17b (0.21 g, 0.4 mmol, 1.0 equiv.) was placed and dissolved in dry THF (5.0 mL) at 0 °C. Then the 1.0 M KHMDS (0.6 mL, 0.6 mmol, 1.5 equiv.) was slowly added in dropwise. The reaction mixture was then warmed to 65 °C and stirred for 5 h. After quenching the reaction by saturated ammonium chloride, the reaction mixture was concentrated and the resulting residue was stirred with water ($\approx 10 \text{ mL}$) and CH₂Cl₂ (20 mL), adjusted to pH = 2.0 with 1 N HCl and stirred for 30 min. Then the mixture was adjusted to pH =9.0 - 10.0 with ammonium hydroxide, and extracted with CH₂Cl₂ (10 mL \times 3). The combined organic layer was washed with brine (15 mL \times 3) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give crude product (\pm) - β -18b, which was purified by the flash chromatography (silica gel), eluting with petroleum ether/EtOAc =4:1, to give (\pm)- β -18b (60 mg) as a white solid. Yield: 29.9% over two steps. Mp: 154.3 - 156.4 °C; ¹H-NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 8.1 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 1H), 7.09 (d, J = 8.1 Hz, 1H), 6.44 (s, 1H), 5.90 (s, 1H), 5.85 (d, J = 1.5 Hz, 1H), 5.83 (d, J = 1.5 Hz, 1H), 5.74 (d, J = 3.0 Hz, 1H), 5.34 (d, J = 2.8 Hz, 1H), 4.00 - 3.96 (m, 3H), 3.93 (s, 3H), 3.62 - 3.56 (m, 1H), 3.49 (ddd, J = 13.3, 9.5, 5.1 Hz, 1H), 2.76 (dt, J = 16.3, 4.8 Hz, 1H), 2.55 (ddd, J = 16.1, 9.4, 6.2 Hz, 1H). HRMS (ESI⁺): m/z calcd. for C₂₇H₂₂F₃NO₈SNa [M+Na]⁺ = 600.0916, found 600.0912.

6,7-dimethoxy-3-(6-(methylsulfonyl)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinolin-5-

yl)isobenzofuran-1(3H)-one. To a flame dried, N₂ flushed three-neck round-bottom flask, a stir bar and the starting substrate 17c (0.17 g, 0.4 mmol, 1.0 equiv.) was placed and dissolved in dry 1,4dioxane (10.0 mL) at 0 °C. Then the 60% NaH (24 mg, 0.6 mmol, 1.5 equiv.) was slowly added in protion. The reaction mixture was then warmed to 60 °C and stirred for 5 h. After quenching the reaction by saturated ammonium chloride, the reaction mixture was concentrated and the resulting residue was stirred with water ($\approx 10 \text{ mL}$) and CH₂Cl₂ (20 mL), adjusted to pH = 2.0 with 1 N HCl and stirred for 30 min. Then the mixture was adjusted to pH = 9.0 - 10.0 with ammonium hydroxide, and extracted with CH_2Cl_2 (10 mL \times 3). The combined organic layer was washed with brine (15 mL \times 3) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give crude product (\pm) - β -18c, which was purified by the flash chromatography (silica gel), eluting with petroleum ether/EtOAc =4:1, to give (\pm) - β -18c (30 mg) as a white solid. Yield: 19.2% over two steps. Mp: 190.8 – 196.5 °C; ¹H-NMR (600 MHz, CDCl₃) δ 7.15 (d, J = 8.2 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 6.61 (s, 1H), 6.23 (s, 1H), 5.91 (s, 2H), 5.72 (d, J = 3.4 Hz, 1H), 5.34 (d, J = 3.4 Hz, 1H), 4.04 (s, 3H), 3.90 (s, 3H), 3.68 (ddd, J = 13.3, 5.6, 3.4 Hz, 1H), 3.00 - 2.94 (m, 1H), 2.93 (s, 3H), 2.87 (ddd, J = 16.5, 10.6, 6.0 Hz, 1H), 2.69 (dt, J = 16.3, 3.8 Hz, 1H). ¹³C-NMR (150 MHz, CDCl₃) *b* 167.16, 153.08, 148.51, 147.57, 146.21, 139.02, 128.63, 121.82, 119.03, 118.61, 117.57, 109.22, 106.80, 101.19, 82.30, 62.39, 57.99, 56.78, 40.69, 40.03, 27.74. HRMS (ESI⁺): *m/z* calcd. for $C_{21}H_{21}NO_8SNa \ [M+Na]^+ = 470.0886$, found 470.0880.

1,2:4,5-Di-*O***-isopropylidene-L-psicopyranose** (*ent-14*). To the L-fructose (2.2 g, 12.2 mmol) in acetone (100 mL) was added concentrated H₂SO₄ (70 µL, 1.2 mmol) under N₂ after cooling to 0 °C. The resulting reaction mixture was stirred overnight at 25 °C. After neutralizing with 10% NaOH/H₂O, the reaction mixture was concentrated to a solid, which was then dissolved in CH₂Cl₂ (50 mL). The resulting solution was washed with water (25 mL) and brine (3 × 15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated to give a white solid. After recrystallization in *n*-hexane - CH₂Cl₂ (4:1, v/v), alcohol *ent-14* (1.71 g) was obtained as white needles. Yield: 54.8%; Mp: 116.4 – 117.8 °C, $[\alpha]_D^{25} = + 141.08^\circ$ (c 0.314, acetone) [lit^[3] M.p. 115 – 116 °C, $[\alpha]_D^{25} = - 142.4^\circ$ (c 1.05, CHCl₃)]; ¹H-NMR (600 MHz, CDCl₃) δ 4.22 (dd, *J* = 5.8, 2.1 Hz, 1H), 4.19 (d, *J* = 8.8 Hz, 1H), 4.15 – 4.10 (m, 2H), 4.01 (d, *J* = 13.4 Hz, 1H), 3.99 (d, *J* = 8.8 Hz, 1H), 3.67 (d, *J* = 6.9 Hz, 1H), 1.94 (brs, 1H), 1.54 (s, 3H), 1.52 (s, 3H), 1.45 (s, 3H), 1.37 (s, 3H); ¹³C-NMR (150 MHz, CDCl₃) δ 111.84, 109.44, 104.50, 77.30, 73.31, 72.34, 70.43, 60.75, 27.94, 26.45, 26.24, 25.95; HRMS (ESI⁺): *m/z* calcd for C₁₂H₂₀O₆Na [M+Na]⁺ = 283.1158, found 283.1158.

1,2:4,5-Di-O-isopropylidene-L-erythro-2,3-hexodiuro-2,6-pyranose (ent-13). Compound ent-14 (8.93 g, 34.4 mmol), Et₃BzNCl (0.78 g, 3.4 mmol), NaIO₄ (11.02 g, 51.5 mmol), and K₂CO₃ (0.71 g, 5.2 mmol) were vigorously stirred in a mixture of 35 mL of CHCl₃ and 35 mL of H₂O. RuCl₃ monohydrate (0.77 g, 3.4 mmol) were added, and the reaction mixture was heated at 70 °C. 2-Propanol (12 mL) was added after 2 h, and the suspension was further stirred for 2 h. The reaction mixture was filtered through a Celite pad, and this material was washed with CH_2Cl_2 (3 × 20 mL). This solution was mixed with the filtrate, the organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were washed with saturated Na₂SO₃ (130 mL), brine (100 mL), and water (100 mL). The white solid was obtained after drying and evaporating the solvents. Purification of the crude product by flash chromatography, eluting with *n*-hexane - CH_2Cl_2 (4:1, v/v) to yield ent-13 as a white acicular solid. Yield: 57.5% (5.1 g). Mp: 98.1 – 100.0 °C, $[\alpha]_D^{25} = +113.7^\circ$ (c 1.0, CHCl₃); ¹H-NMR (600 MHz, $CDCl_3$) $\delta 4.73$ (d, J = 5.6 Hz, 1H), 4.61 (d, J = 9.5 Hz, 1H), 4.57 - 4.53 (m, 1H), 4.39 (dd, J = 13.5, 2.1 Hz, 1H), 4.12 (d, J = 13.5 Hz, 1H), 4.00 (d, J = 9.5 Hz, 1H), 1.55 (s, 3H), 1.46 (s, 3H), 1.40 (s, 6H); ¹³C-NMR (150 MHz, CDCl₃) δ 196.94, 113.82, 110.64, 104.13, 77.93,75.88, 70.01, 60.09, 27.15, 26.52, 26.06, 26.01. MS (ESI⁺): *m*/*z* [M+Na]⁺ = 280.8.

The Synthesis of the Phthalide Tetrahydroisoquinoline Core of (-)-β-Hydrastine in Method B

methyl 2,3-*dimethoxy-6-((2S,3S)-3-(6-(2-((4-(trifluoromethyl)phenyl)sulfonamido)ethyl)benzo[d]* [1,3]*dioxol-5-yl)oxiran-2-yl)benzoate* [(S,S)-17b]. To a 100 mL three-neck round-bottom flask were added buffer (0.05 M Na₂B₄O₇•10H₂O in 4×10^{-4} M aqueous Na₂(EDTA), 10 mL), acetonitrile (15 mL), compound 16b (150 mg, 0.3 mmol, 1.0 equiv.), tetrabutylammonium hydrogen sulfate (15 mg). The reaction mixture was cooled with an ice bath. A solution of Oxone (0.85 g, 1.38 mmol) in aqueous Na₂(EDTA) (4×10^{-4} M, 6.5 mL), a solution of K₂CO₃ (0.8 g, 5.8 mmol) in water (6.5 mL) and a solution of ketone *ent-13* (0.23 g, 0.9 mmol) in acetonitrile (3.0 mL) were added dropwise through three separate addition funnels over a period of 4.5 h. The reaction was then monitored by TLC to follow the reaction to completion, and quenched by addition of water (20 mL). The mixture was extracted with CH₂Cl₂ (3×20 mL), washed with brine (3×20 mL), dried over Na₂SO₄. The solvent was removed under vacuum to give crude product (*S*,*S*)-17b, which was directly used for the next step.

(S)-6,7-dimethoxy-3-((R)-6-((4-(trifluoromethyl)phenyl)sulfonyl)-5,6,7,8-tetrahydro-[1,3] dioxolo[4,5-g]isoquinolin-5-yl)isobenzofuran-1(3H)-one. To a flame dried, N₂ flushed three-neck round-bottom flask, a stir bar and the starting substrate 17b (\approx 0.3 mmol, 1.0 equiv.) was placed and dissolved in dry THF (5.0 mL) at 0 °C. Then the 1.0 M KHMDS (0.45 mL, 0.45 mmol, 1.5 equiv.) was slowly added in dropwise. The reaction mixture was then warmed to 65 °C and stirred for 5 h. After quenching the reaction by saturated ammonium chloride, the reaction mixture was concentrated and the resulting residue was stirred with water (\approx 10 mL) and CH₂Cl₂ (20 mL), adjusted to pH = 2.0 with 1 N HCl and stirred for 30 min. Then the mixture was adjusted to pH = 9.0 – 10.0 with ammonium hydroxide, and extracted with CH₂Cl₂ (10 mL × 3). The combined organic layer was washed with brine (15 mL × 3) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give crude product (–)- β -18b, which was purified by the flash chromatography (silica gel), eluting with petroleum ether/EtOAc =4:1, to give (–)- β -18b (12 mg) as a white solid. Yield: 8.3% (29.5% brsm) over two steps, 78% ee (Chiralpak IA column, *n*- Hexane/Ethanol/Diethylamine = 70:30:0.1, 254 nm, 1.0 mL/min, 35 °C, $t_{major} = 3.694$ min, $t_{minor} = 8.726$ min). ¹H-NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.2 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 6.44 (s, 1H), 5.90 (s, 1H), 5.84 (dd, J = 13.1, 1.3 Hz, 2H), 5.74 (d, J = 2.8 Hz, 1H), 5.34 (d, J = 2.9 Hz, 1H), 3.98 (s, 3H), 3.92 (s, 3H), 3.67 – 3.55 (m, 1H), 3.55 – 3.44 (m, 1H), 2.76 (dt, J = 16.4, 4.8 Hz, 1H), 2.56 (ddd, J = 15.7, 9.1, 6.2 Hz, 1H). ¹³C-NMR (150 MHz, CDCl₃) δ 166.76, 153.10, 148.59, 147.56, 145.81, 143.13, 139.10, 134.49 (d, J = 33.1 Hz), 127.67, 126.26 (dd, J = 7.3, 3.3 Hz), 126.26 (dd, J = 7.3, 3.3 Hz), 121.20, 119.11, 118.47, 117.26, 108.87, 106.91, 101.11, 83.16, 62.41, 59.46, 56.82, 41.10, 27.02; HRMS (ESI⁺): m/z calcd. for $C_{27}H_{22}F_3NO_8SNa$ [M+Na]⁺ = 600.0916, found 600.0907.

Table S3. Attempts to the Optimization of the Reaction Conditions for *N*-Deprotection of (-)- β -18b

Entry ^a	Conditions	$\operatorname{Yield}^{b}(\%)$
1	Mg, MeOH, Sonication, rt, 1.0 h	ND^{c}
2	Mg, NH ₄ Cl, MeOH, THF, Sonication, 3.0 h, rt	ND^{c}
3	SmI ₂ , THF, 0 °C – rt, 12 h	ND ^c
4	Na naphthalide, THF, 2 h, -78 °C	ND ^c

^{*a*}The substrate (–)- β -18b (15 mg). ^{*b*}Isolated yield of (–)- β -2. ^{*c*}The (–)- β -2was not detected by TLC and the substrate (–)- β -18b was decomposed.

3. Natural Product Spectra Comparisons

(-)-α-Hydrastine ¹H NMR spectra comparison:

Lit ⁴ data	Our synthetic data	A S (mmm)
[(±)-α-Hydrastine, 270 MHz]	(600 MHz, CDCl ₃)	До (ppm)
7.04, 7.20 (AD time, $L = 9.2$ Hz, each 111)	7.27 (d, <i>J</i> = 8.2 Hz, 1H)	0.02
7.04, 7.29 (AB type, $J = 8.5$ Hz, each 1H)	7.04 (d, J = 8.2 Hz, 1H)	0
6.65 (s, 1H)	6.64 (s, 1H)	0.01
6.37 (s, 1H)	6.37 (s, 1H)	0
5.79, 5.92 (each d $I = 1.2$ Hz each 1H)	5.83 (d, J = 1.0 Hz, 1H)	0
5.78, 5.83 (each d, $J = 1.3$ Hz, each 1H)	5.78 (d, <i>J</i> = 1.0 Hz, 1H)	0
5.54 (d, J = 3.3 Hz, 1H)	5.55 (d, <i>J</i> = 2.8 Hz, 1H)	0.01
4.00, (d, $J = 3.3$ Hz, 1H)	4.01 (d, J = 2.3 Hz, 1H)	0.01
3.98 (s, 3H)	3.98 (s, 3H)	0
3.84 (s, 3H)	3.84 (s, 3H)	0
3.00-3.10 (m, 1H)	3.0-3.16 (m, 1H)	_a
	2.85 – 2.65 (m, 1H)	_a
2.40-2.80 (m, 3H)	2.53 (d, <i>J</i> = 9.9 Hz, 1H)	_a
	2.46 (d, <i>J</i> = 15.6 Hz, 1H)	_a
2.55 (s, 3H)	2.56 (s, 3H)	0.01

^aThese three resonances did not perfectly match with the reported values.⁴ We believe this difference might be due to the better resolution obtained by acquiring our ¹H NMR spectrum on a 600 MHz NMR instrument.

(–)-α-Hydrastine ¹³C NMR spectra comparison:

	Our synthetic data	AS (
Lit ^o data	(150 MHz, CDCl ₃)	<u>до (ppm)</u>
168.0	167.89	0.11
152.3	152.24	0.06
147.6	147.67	0.07
146.3	146.25	0.05
145.8	145.78	0.02
141.1	140.94	0.06
130.0	129.81	0.19
125.3	125.10	0.20
119.3	119.24	0.06
118.4	118.22	0.18
118.1	117.99	0.11
108.2	108.14	0.06
107.4	107.38	0.02
100.7	100.74	0.04
81.8	80.89	0.09
66.2	66.22	0.02
62.2	62.30	0.10
56.7	56.72	0.02
51.3	51.26	0.04
44.9	44.93	0.03
29.2	29.14	0.06

(-)-β-Hydrastine ¹H NMR spectra comparison:

Lit ⁵ data	Our synthetic data	() (, , , , , , , , , , , , , , , , , ,
(270 MHz)	(600 MHz, CDCl ₃)	210 (ppm)
7.08 (1H)	7.08 (d, <i>J</i> = 8.3 Hz, 1H)	0
6.52 (1H)	6.54 (d, <i>J</i> = 8.2 Hz, 1H)	0.02
6.58 (s, 1H)	6.58 (s, 1H)	0
6.40 (s, 1H)	6.36 (s, 1H)	0.04
5.91 (s, 2H)	5.91 (dd, 2H)	_a
5.48 (d, 1H)	5.51 (d, 1H)	0.03
4.06 (s, 3H)	4.06 (s, 3H)	0
3.98 (d, 1H)	4.00 (d, J = 3.7 Hz, 1H)	0.02
3.89 (s, 3H)	3.89 (s, 3H)	0
2.85-2.94 (m, 1H)	2.92 (t, 1H)	_a
2.42-2.65 (m, 2H)	2.68-2.57 (m, 2H)	0
2.55 (s, 3H)	2.56 (s, 3H)	0.01
2.22-2.32 (m, 1H)	2.35 – 2.25 (m, 1H)	0

^{*a*}These two resonances did not perfectly match with the reported values.⁵ We believe this difference might be due to the better resolution obtained by acquiring our ¹H NMR spectrum on a 600 MHz NMR instrument.

(-)-β-Hydrastine ¹³C NMR spectra comparison:

Lit ⁵ data	Our synthetic data (150 MHz, CDCl ₃)	$arDelta\delta$ (ppm)
167.0	167.69	0.69
152.6	152.54	0.06
147.5	148.01	0.51
146.3	146.78	0.48
145.4	145.78	0.38
140.4	140.70	0.30
130.0	130.24	0.24
124.5	124.46	0.04
119.4	119.64	0.24
118.5	118.61	0.11
117.3	117.63	0.33
108.1	108.54	0.44
107.3	107.77	0.47
100.4	100.87	0.47
82.7	82.86	0.16
66.0	66.11	0.11
62.0	62.33	0.33
56.7	56.81	0.11
49.0	48.96	0.04
44.7	44.74	0.04
26.7	26.54	0.16

4. Copies of ¹H and ¹³C-NMR Spectra, HRMS (or MS) and HPLC Spectra

¹H NMR (600 MHz, DMSO-*d*₆) spectrum for compound 10

¹³C NMR (100 MHz, CDCl₃) spectrum for compound 10

User Spectra

HRMS for compound 12

¹³C NMR (150 MHz, CDCl₃) spectrum for compound 12

¹H NMR (600 MHz, CDCl₃) spectrum for compound 6

¹³C NMR (150 MHz, CDCl₃) spectrum for compound 6

¹H-NMR (600 MHz, CDCl₃) spectrum for 14

¹³C-NMR (150 MHz, CDCl₃) spectrum for 13

HRMS for compound 5

¹³C NMR (150 MHz, DMSO-*d*₆) spectrum for compound 4

HRMS for compound 4

Column	: CHIRALPAK [®] IH(IH00CD-VK018)	
Column size	: 0.46 cm I.D. ×15 cm L ×5 μm	
Injection	: 4 μl	
Mobile phase	: n-Hexane/ Ethanol / Diethylamine = $40/60/0.1$ (v/v/v))
Flow rate	: 0.8 ml/min	
Wave length	: UV 220 nm	
Temperature	: 35°C	
Sample solution	: X mg/ml in EtOH30% MeOH30% Hexane40%(荡洗)	
HPLC equipment	· Shimadzu LC 20A OA&OC-HPLC-12	

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	5.592	1265119	50.055	6855	1.164	
2	7.649	1262355	49.945	5560	1.152	6.046

Rac-[(\pm)- α -2]

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	5.537	2977655	92.719	6665	1.183	
2	7.569	233812	7.281	5629	1.159	6.021

Table S1 entry 14 [(–)-α-2]

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	5.607	3462326	89.236	6872	1.173	
2	7.673	417645	10.764	5632	1.179	6.080

Table	S1	entry	15
-------	-----------	-------	----

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	5.535	636685	79.076	7073	1.212	
2	7.556	168471	20.924	6113	1.070	6.219

Table S1 entry 16

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	5.532	793531	85.309	7064	1.147	
2	7.535	136650	14.691	6000	1.131	6.138

Table S1 entry 17

¹H-NMR (600 MHz, CDCl₃) spectrum for (–)-α-Hydrastine

¹³C-NMR (150 MHz, CDCl₃) spectrum for (–)-a-Hydrastine

¹H-NMR (600 MHz, CDCl₃) spectrum for (–)-β-Hydrastine

¹³C-NMR (150 MHz, CDCl₃) spectrum for (–)-β-Hydrastine

HRMS for (–)-β-Hydrastine

Chiral HPLC spectrum for (–)-β-Hydrastine

Column	:	CHIRALPAK [®] IF
Column size	:	0.46 cm I.D. ×15 cm L ×5 μm
Injection	:	10µ1
Mobile phase	:	n-Hexane/ Ethanol/Diethylamine=70/30/0.1 (v/v/v)
Flow rate	:	1.0 ml/min
Wave length	:	UV 220 nm
Temperature	:	35°C
Sample solution	:	1.0mg/mL inDCM10% EtOH 20% n-Hexane 70%
HPLC equipment	:	Shimadzu LC 20A QA&QC-HPLC-10

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	5.873	3474236	48.3197	4648.293	1.418	
2	7.280	3715874	51.6803	5091.448	1.322	3.738

Rac-β-Hydrastine

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	5.868	4347126	90.4651	4047.164	1.452	
2	7.317	623003	9.5349	6019.769	1.186	3.883

¹H-NMR (600 MHz, DMSO-*d*₆) spectrum for 16a

¹³C-NMR (150 MHz, CDCl₃) spectrum for 16a

MS for 16a

¹³C-NMR (150 MHz, DMSO-d₆) spectrum for 16b

¹H-NMR (600 MHz, CDCl₃) spectrum for 16c

HRMS for 16c

¹H-NMR (600 MHz, CDCl₃) spectrum for (±)-β-18b

HRMS for (±)-β-18b

¹H-NMR (600 MHz, CDCl₃) spectrum for (±)-β-18c

¹³C-NMR (150 MHz, DMSO-*d*₆) spectrum for (±)-β-18c

HRMS for ent-14

¹³C-NMR (150 MHz, DMSO-d₆) spectrum for (-)-β-18b

HRMS for (–)-β-18b

Chiral HPLC spectrum for (–)-β-18b

Column	:	CHIRALPAK [®] IA
Column size	:	0.46 cm I.D. ×10 cm L ×5 μm
Injection	:	10 μl
Mobile phase	:	Hexane/ Ethanol / Diethylamine = $70/30/0.1$ (v/v/v)
Flow rate	:	1.0 ml/min
Wave length	:	UV 254 nm
Temperature	:	35℃
Sample solution	:	0.8 mg/ml in DCM50% Hexane50%
HPLC equipment	:	Shimadzu LC 20A QA&QC-HPLC-12

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	3.694	2513716	89.196	2540	1.203	
2	8.726	304469	10.804	1434	0.902	8.284

(–)-β-18b

6. References

(1) (a) Kang, J.; Lim, G. J.; Yoon, S. K.; Kim, M. Y. J. Org. Chem. 1995, 60, 564-577. (b) Mio, S.;

Kumagawa, Y.; Sugai, S. Tetrahedron 1991, 47, 2133-2144.

(2) (a) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-

11235; (b) Tu, Y.; Wang, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806-9807.

(3) Wang, B.; Wu, X.-Y.; Wong, O. A.; Nettles, B.; Zhao, M.-X.; Chen, D.; Shi, Y. J. Org. Chem. **2009**, *74*, 3986-3989.

(4) Orito, K.; Miyazawa, M.; Kanbayashi, R.; Tokuda, M.; Suginome, H. J. Org. Chem. 1999, 64, 6583-6596.

(5) Blaskó G, Gula D J, Shamma M. J. Nat. Prod., 1982, 45, 105-12.