Synthesis and molecular modeling studies of cholinesterase inhibitor dispiro[indoline-3,2'-pyrrolidine-3',3''-pyrrolidines]

 Aboshouk, ${ }^{\mathrm{e}}$ Walid Fayad, ${ }^{\mathrm{f}}$ Nehmedo G. Fawzy ${ }^{\mathrm{e}}$ and Adel S. Girgis*e
${ }^{a}$ Department of Chemistry, Faculty of Science, Helwan University, Helwan, Egypt
${ }^{\text {b }}$ Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
c Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
${ }^{\text {d }}$ X-Ray Crystallography Lab., Physics Division, National Research Centre, Dokki, Giza 12622, Egypt
${ }^{\text {e }}$ Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
f Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
*E-mail: girgisas10@yahoo.com

Supplementary material

Table titles
Table S1. Crystal data and structure refinement parameters for compound 8c.
Table S2. Bond lengths (\AA) of compound 8c.
Table S3. Bond angles $\left({ }^{\circ}\right)$ for compound $\mathbf{8 c}$.
Table S4. Descriptor of the BMLR-QSAR model for the tested compounds as AChE inhibitors.

Table S5. Observed and estimated activity values for the tested compounds as AChE inhibitors according to the BMLR-QSAR model.
Table S6. Molecular descriptor values of the BMLR-QSAR model for the synthesized compounds as AChE inhibitors.

Table S7. Descriptor of the BMLR-QSAR model for the tested compounds as BChE inhibitors.

Table S8. Observed and estimated activity values for the tested compounds as BChE inhibitors according to the BMLR-QSAR model.

Table S9. Molecular descriptor values of the BMLR-QSAR model for the synthesized compounds as BChE inhibitors.

Table S10. Observed and estimated activity values for the tested compounds 8a-l as AChE inhibitors according to the 3D-pharmacophore model.

Table S11. Observed and estimated activity values for the tested compounds 8a-l as BChE inhibitors according to the 3D-pharmacophore model.

Figure captions

Fig. S1. IR spectrum of compound $\mathbf{8 a}$ (KBr pellet).
Fig. S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 a}$ in DMSO- d_{6}.
Fig. S3. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 a}$ in DMSO- d_{6}.
Fig. S4. IR spectrum of compound $\mathbf{8 b}$ (KBr pellet).
Fig. S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 b}$ in DMSO- d_{6}.
Fig. S6. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 b}$ in DMSO- d_{6}.
Fig. S7. HSQC spectrum of compound $\mathbf{8 b}$ in DMSO- d_{6}.
Fig. S8. IR spectrum of compound $\mathbf{8 c}$ (KBr pellet).
Fig. S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 c}$ in DMSO- d_{6}.
Fig. S10. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $8 \mathbf{c}$ in DMSO- d_{6}.
Fig. S11. IR spectrum of compound $\mathbf{8 d}(\mathrm{KBr}$ pellet).
Fig. S12. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 d}$ in DMSO- d_{6}.
Fig. S13. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 d}$ in DMSO- d_{6}.
Fig. S14. IR spectrum of compound $\mathbf{8 e}$ (KBr pellet).
Fig. S15. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{8 e}$ in DMSO- d_{6}.
Fig. S16. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 e}$ in DMSO- d_{6}.
Fig. S17. IR spectrum of compound $\mathbf{8 f}$ (KBr pellet).
Fig. S18. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 f}$ in DMSO- d_{6}.
Fig. S19. ${ }^{13} \mathrm{C}-$ NMR spectrum of compound $\mathbf{8 f}$ in DMSO- d_{6}.

Fig. S20. IR spectrum of compound $\mathbf{8 g}$ (KBr pellet).
Fig. S21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 g}$ in DMSO- d_{6}.
Fig. S22. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 g}$ in DMSO- d_{6}.
Fig. S23. HSQC spectrum of compound $\mathbf{8 g}$ in DMSO- d_{6}.
Fig. S24. IR spectrum of compound $\mathbf{8 h}$ (KBr pellet).
Fig. S25. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 h}$ in DMSO- d_{6}.
Fig. S26. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 h}$ in DMSO- d_{6}.
Fig. S27. IR spectrum of compound $\mathbf{8 i}$ (KBr pellet).
Fig. S28. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 i}$ in $\mathrm{DMSO}-d_{6}$.
Fig. S29. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 i}$ in DMSO- d_{6}.
Fig. S30. IR spectrum of compound $\mathbf{8 j}$ (KBr pellet).
Fig. S31. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 j}$ in DMSO- d_{6}.
Fig. S32. ${ }^{13} \mathrm{C}-$ NMR spectrum of compound $\mathbf{8 j}$ in DMSO- d_{6}.
Fig. S33. IR spectrum of compound $\mathbf{8 k}$ (KBr pellet).
Fig. S34. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 k}$ in DMSO- d_{6}.
Fig. S35. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 k}$ in DMSO- d_{6}.
Fig. S36. IR spectrum of compound $\mathbf{8 1}$ (KBr pellet).
Fig. S37. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 1}$ in DMSO- d_{6}.
Fig. S38. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 81 in DMSO- d_{6}.
Fig. S39. Dose-response curve for the tested compounds against RPE1 (retinal pigment epithelium) cell line.

Fig. S40. BMLR-QSAR model plot of correlations representing the observed vs. predicted $\log /\left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$ values for the tested compounds as AChE inhibitor (compound 8d is an outlier).

Fig. S41. BMLR-QSAR model plot of correlations representing the observed vs. predicted $\log /\left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$ values for the tested compounds as BChE inhibitor.

Fig. S42. (A) Constraint distances " $\mathrm{H}-1-\mathrm{H}-2=6.872, \mathrm{H}-1-$ PosIon $=5.599, \mathrm{H}-1-$ $\mathrm{HBA}=5.148, \mathrm{H}-2-\mathrm{HBA}=4.747, \mathrm{H}-2-\operatorname{PosIon}=8.062, \mathrm{HBA}-\operatorname{PosIon}=3.514 \AA "$; (B) Constraint angles " $\mathrm{H}-1-\mathrm{H}-2-\operatorname{PosIon}=43.12, \mathrm{H}-2-\mathrm{H}-1-\mathrm{HBA}=43.65$, $\mathrm{HBA}-$ $\mathrm{H}-1-$ PosIon $=37.87^{\circ}$ " of the generated 3D-pharmacophore for the tested compounds

8a-l as AChE inhibitor which contains two hydrophobics (H-1, H-2; light blue), one hydrogen bonding acceptor (HBA; green) and one positive ionizable (PosIon; red).
Fig. S43. 3D-pharmacophore model mapped on the tested compounds 8a-l as AChE inhibitor.

Fig. S44. (A) Constraint distances " $\mathrm{H}-\mathrm{HBA}=4.695, \mathrm{H}-\mathrm{HBD}=7.860$, $\mathrm{HBA}-\mathrm{HBD}=$ $3.326 \AA$ "; (B) Constraint angle "H $-\mathrm{HBD}-\mathrm{HBA}=13.64{ }^{\circ}$ " of the generated 3Dpharmacophore for the tested compounds $\mathbf{8 a}-\mathbf{l}$ as BChE inhibitor which contains one hydrophobic (H; light blue), one hydrogen bonding acceptor (HBA; green) and one hydrogen bonding donor (HBD; purple).
Fig. S45. 3D-pharmacophore model mapped on the tested compounds 8a-l as BChE inhibitor.

Single crystal X-ray studies

Suitable colorless single crystals of compound 8c were selected for X-ray diffraction analysis. The X-ray diffraction data were collected at room temperature (298 K) on an Enraf-Nonius 590 diffractometer with a Kappa CCD detector using graphite monochromated Mo-K $(\lambda=0.71073 \AA)$ radiation. ${ }^{1}$ Reflection data has been recorded in the rotation mode using the ϕ and ω scan technique with $2 \theta_{\max }=\square 27.912$. In absence of significant anomalous scattering, Friedel pairs have been merged. Changes in illuminated volume were kept to a minimum, and were taken into account by the multi-scan interframe scaling . ${ }^{2,3}$ Unit cell parameters were determined from least-squares refinement with θ in the range $3 \leq \theta \leq 27$. The structure was solved using SUPERFLIP ${ }^{4}$ implemented in CRYSTALS program suit. ${ }^{5}$ The refinement was carried out by full-matrix least-squares method on the positional and anisotropic temperature parameters of all non-hydrogen atoms based on F^{2} using CRYSTALS package. All hydrogen atoms were positioned geometrically and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry $(\mathrm{C}-\mathrm{H}$ in the range $0.93-0.98$ and $\mathrm{N}-\mathrm{H}$ in the range $0.86-0.89)$ and $\mathrm{U}_{\text {iso }}(\mathrm{H})$ (in the range 1.2-1.5 times $\mathrm{U}_{\text {eq }}$ of the parent atom). Then, the positions were refined with riding constraints. ${ }^{6}$ The general-purpose crystallographic tool PLATON ${ }^{7}$ was used for the structure analysis and presentation of the results. ORTEP-3 for Windows ${ }^{8}$ and MERCURY ${ }^{9}$ programs were used for molecular graphics. Details of the data collection conditions and the parameters of the refinement process for compound $\mathbf{8 c}$ are given in Table S1.

Molecular modeling studies

The synthesized dispiro[indoline-3,2'-pyrrolidine-3',3"-pyrrolidines] 8a-I revealing variable AChE and BChE inhibitory properties were utilized for developing the 2D-QSAR modeling by CODESSA-Pro (comprehensive descriptors for structural and statistical analysis) software. Geometry of the compounds was initially optimized by AM1 technique using hyperChem 8.0 then, uploaded to CODESSA-Pro for final geometrical structure optimization by MOPAC. ${ }^{10-12}$ CODESSA-Pro calculated 656 molecular descriptors (constitutional, topological, geometrical, charge-related, semiempirical, thermodynamical, molecular-type, atomic-type and bond-type descriptors) for
the exported bio-active agents. Mathematical transformation of the experimental values [including $\mathrm{IC}_{50}, 1 / \mathrm{IC}_{50}, \log \left(\mathrm{IC}_{50}\right)$ and $1 / \log \left(\mathrm{IC}_{50}\right) \mu \mathrm{M}$] were used searching for the best QSAR model. The best multi-linear regression (BMLR) technique was utilized which is a stepwise search for the best n-parameter regression equations (where n stands for the number of descriptors used), based on the highest R^{2} (squared correlation coefficient), $R^{2} \mathrm{cvOO}$ (squared cross-validation "leave one-out, LOO" coefficient), $R^{2} \mathrm{cvMO}$ (squared cross-validation "leave many-out up to 20% of the training set, LMO" coefficient), F (Fisher statistical significance criteria) values, and s^{2} (standard deviation). The QSAR up to 3-descriptor model describing the biological activity of the bio-active agents were generated (obeying the thumb rule of $4: 1$ which is the ratio between the data points and the number of QSAR descriptor).

Minimum (>0.1) bond order for atom C is an atomic type descriptor with the highest coefficient value (466.922) among all the descriptors of AChE model. This is why the higher descriptor value, the lower AChE inhibitory efficacy of the tested agent as shown in compounds $8 \mathbf{8 a}$ and $\mathbf{8 e}$ (descriptor value $=0.10497,0.10232$ with estimated IC_{50} value $=129.99,3.25 \mu \mathrm{M}$ for compounds $\mathbf{8 a}$ and $\mathbf{8 e}$, respectively). HA dependent HDCA2/SQRT(TMSA) (MOPAC PC) is a charge related descriptor with relatively high coefficient value (85.5021). Compounds with high descriptor value predicted low AChE property and vice versa as shown for compounds $\mathbf{8 a}$ and $\mathbf{8 e}$ (descriptor value $=0.1247$, 0.11715). HDCA2 (area weighed surface charge of hydrogen bonding donor atoms) can be calculated by equ. (1). ${ }^{13}$

$$
\begin{equation*}
H D C A 2=\sum_{D} \frac{q_{D \sqrt{S_{D}}}}{\sqrt{S_{\text {tot }}}}{ }_{D} \in H_{H-\text { donor }} \tag{1}
\end{equation*}
$$

Where, S_{D} stands for the solvent accessible surface area of H -bonding donor H atoms (selected by threshold charge), q_{D} is the partial charge on H -bonding donor H atoms (selected by threshold charge) and $S_{\text {tot }}$ is the total solvent accessible molecular surface area.

Square root of surface area for atom C is also a charge related descriptor with negative sign coefficient value (-0.164864). For this reason, the higher descriptor value of an agent, the higher predicted AChE inhibitory activity and vice versa as revealed by
compounds $8 \mathbf{c}$ and $\mathbf{8 e}$ (descriptor value $=55.9192,57.81774$ corresponding to predicted $\mathrm{IC}_{50}=84.39,3.25 \mu \mathrm{M}$ for compounds $\mathbf{8 c}$ and $\mathbf{8 e}$, respectively). Atomic charge weighed partial positively and negatively charged surface area can be calculated by equs. (2) and (3), respectively. ${ }^{13}$

$$
\begin{align*}
& P P S A 3=\sum_{A} q_{A} \cdot S_{A} \quad{ }_{A} \in\left\{\delta_{A}>0\right\} \tag{2}\\
& P N S A 3=\sum_{A} q_{A} \cdot S_{A} \quad A\left\{\delta_{A}>0\right\} \tag{3}
\end{align*}
$$

Where, S_{A} is the positively/negatively charged solvent accessible atomic surface area and q_{A} is the atomic partial charge.

ZX Shadow/ZX rectangle is a geometrical descriptor with the highest coefficient value (10.5556) among all the 3 descriptor BChE model. The higher descriptor value of an agent the lower potency of the molecule as shown by compounds $\mathbf{8 c}$ and $\mathbf{8 e}$ (descriptor value $=0.68051,0.59553$ corresponding to estimated properties $=64.31,4.77$ for compounds $8 \mathbf{c}$ and $8 \mathbf{8 e}$, respectively). Relative shadow areas of a molecule can be determined by equ. (4). ${ }^{13}$

$$
\begin{equation*}
S_{k=}^{r} \frac{\int_{(C)}(v d \rho-\rho d v)}{S^{(k)}} \tag{4}
\end{equation*}
$$

Where, C is contour of the projection of the molecule on the plane defined by two principal axes of the molecule ($k=X Y, X Z$ or $Y Z$ plane), $v-x$ or $y, \rho-y$ or $z, S^{(k)}=X \bullet$ $Y ; X \cdot Z$ or $Y \bullet Z$.

Maximum atomic state energy for atom O is an atomic type descriptor. It is the second highest coefficient value of the model (2.22981). Again the higher descriptor value of an agent the lower potency of the molecule as shown by compounds $\mathbf{8 a}$ and $\mathbf{8 e}$ (descriptor value $=308.443$, 308.2474 corresponding to estimated properties $=68.95$, 4.77 for compounds $\mathbf{8 a}$ and $\mathbf{8 e}$, respectively). Shadow plane XY is a molecular type descriptor with lowest coefficient value of the model (0.0220702). Its effect is the same similar to the previously mentioned BChE descriptor model for the potency of the
molecule as shown by compounds 8c and $\mathbf{8 e}$ (descriptor value $=107.2,96.96$ for compounds $\mathbf{8 c}$ and $\mathbf{8 e}$, respectively).

References

1 R. W. W. Hooft, Collect: Data collection software, Nonius BV, Delft, The Netherlands, 1998.

2 C. Görbitz, What is the best crystal size for collection of X-ray data? Refinement of the structure of glycyl-L-serine based on data from a very large crystal, Acta Crystallogr. B., 1999, 55, 1090-1098.

3 Z. Otwinowski, W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode, in Methods in Enzymology, vol. 27, C.W. Carter, Jr. Sweet, Eds., New York Academic Press, 1997.

4 L. Palatinus and G. Chapuis, SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, J. Appl. Cryst., 2007, 40, 786-790.

5 P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, CRYSTALS version 12: software for guided crystal structure analysis, J. Appl. Crystallogr., 2003, 36, 1487.

6 R. I. Cooper, A. L. Thompson and D. J. Watkin, CRYSTALS enhancements: dealing with hydrogen atoms in refinement, J. Appl. Crystallogr., 2010, 43, 1100-1107.

7 A. L. Spek, Structure validation in chemical crystallography, Acta Crystallogr. Sect. D Biol. Crystallogr., 2009, 65, 148-155.

8 L. J. Farrugia, ORTEP - 3 for Windows - a version of ORTEP -III with a Graphical User Interface (GUI), J. Appl. Crystallogr., 1997, 30, 565-565.

9 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures, J. Appl. Crystallogr., 2008, 41, 466-470.

10 I. A. Seliem, S. S. Panda, A. S. Girgis, Y. I. Nagy, R. F. George, W. Fayad, N. G. Fawzy, T. S. Ibrahim, A. M. M. Al-Mahmoudy, R. Sakhuja and Z. K. M. Abdel-
samii, Design, synthesis, antimicrobial and DNA gyrase inhibitory properties of fluoroquinolone-dichloroacetic acid hybrids, Chem. Biol. Drug Des., 2020, 95, 248-259.

11 N. G. Fawzy, S. S. Panda, W. Fayad, E. M. Shalaby, A. M. Srour and A. S. Girgis, Synthesis, human topoisomerase II α inhibitory properties and molecular modeling studies of anti-proliferative curcumin mimics, RSC Adv., 2019, 9, 33761-33774.
12 A. R. Katritzky, A. S. Girgis, S. Slavov, S. R. Tala and I. Stoyanova-Slavova, QSAR modeling, synthesis and bioassay of diverse leukemia RPMI-8226 cell line active agents, Eur. J. Med. Chem., 2010, 45, 5183-5199.
13 A. R. Katritzky, R. Petrukhin, I. Petrukhina, A. Lomaka, D. B. Tatham and M. Karelson, CODESSA-Pro software manual 2005, pp. 48, 54, 63.

Table S1. Crystal data and structure refinement parameters for compound $\mathbf{8 c}$.

Chemical formula	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}$
$M r$	466.52
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	298
$a, b, c(\AA)$	$6.2910(5), 16.2664(11), 23.223(2)$
$\beta\left({ }^{\circ}\right)$	$100.00(18)$
$V\left(\AA^{3}\right)$	$2340.4(13)$
Z	4
Radiation type	Mo Ka
$\mu\left(\mathrm{mm}^{-1}\right)$	0.09
Diffractometer	Nonius KappaCCD
Absorption correction	Multi-scan $D E N Z O / S C A L E P A C K$
	$(\mathrm{Otwinowski} \mathrm{\&} \mathrm{Minor}, \mathrm{1997)}$
$T_{\text {min }}, T_{\text {max }}$	$1.00,1.00$
No. of measured, independent and	$5196,5196,1340$
observed $[I>2.0 \sigma(I)]$ reflections	
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.659
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.115,0.042,1.06$
No. of reflections	1340
No. of parameters	316
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.56,-0.64$
CCDC Number	CCDC 1988241

Table S2. Bond lengths (\AA) of compound $\mathbf{8 c}$.

Geometric parameters	Bond lengths $(\AA ̊)$	Geometric parameters	Bond lengths (Å)
$\mathrm{O} 1-\mathrm{C} 2$	$1.224(9)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.392(11)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.408(9)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.327(12)$
$\mathrm{C} 2-\mathrm{C} 13$	$1.484(12)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.390(12)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.436(9)$	$\mathrm{C} 19-\mathrm{C} 20$	$1.391(11)$
$\mathrm{N} 3-\mathrm{C} 10$	$1.363(9)$	$\mathrm{C} 21-\mathrm{N} 22$	$1.488(10)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.363(11)$	$\mathrm{N} 22-\mathrm{C} 23$	$1.459(8)$
$\mathrm{C} 4-\mathrm{C} 9$	$1.387(9)$	$\mathrm{N} 22-\mathrm{C} 35$	$1.497(9)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.407(12)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.617(10)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.382(12)$	$\mathrm{C} 23-\mathrm{C} 28$	$1.526(11)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.344(12)$	$\mathrm{C} 24-\mathrm{O} 25$	$1.202(9)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.375(12)$	$\mathrm{C} 24-\mathrm{N} 26$	$1.364(10)$
$\mathrm{C} 10-\mathrm{O} 11$	$1.219(8)$	$\mathrm{N} 26-\mathrm{C} 27$	$1.440(11)$
$\mathrm{C} 10-\mathrm{C} 12$	$1.582(11)$	$\mathrm{C} 27-\mathrm{C} 28$	$1.414(10)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.523(9)$	$\mathrm{C} 27-\mathrm{C} 34$	$1.342(12)$
$\mathrm{C} 12-\mathrm{C} 14$	$1.555(10)$	$\mathrm{C} 28-\mathrm{C} 29$	$1.415(11)$
$\mathrm{C} 12-\mathrm{C} 23$	$1.589(10)$	$\mathrm{C} 29-\mathrm{C} 30$	$1.358(11)$
$\mathrm{C} 14-\mathrm{C} 15$	$1.515(10)$	$\mathrm{C} 30-\mathrm{O} 31$	$1.420(10)$
$\mathrm{C} 14-\mathrm{C} 21$	$1.513(9)$	$\mathrm{C} 30-\mathrm{C} 33$	$1.392(10)$
$\mathrm{C} 15-\mathrm{C} 16$	$1.422(11)$	$\mathrm{O} 31-\mathrm{C} 32$	$1.440(9)$
$\mathrm{C} 15-\mathrm{C} 20$	$1.364(10)$	$\mathrm{C} 33-\mathrm{C} 34$	$1.396(12)$

Table S3. Bond angles $\left({ }^{\circ}\right)$ for compound 8c.

Geometric parameters	Bond angles (${ }^{\circ}$)	Geometric parameters	Bond angles (${ }^{\circ}$)
O1-C2-N3	122.1 (8)	C16-C17-C18	118.8 (9)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 13$	126.0 (8)	C17-C18-C19	122.9 (9)
N3-C2-C13	111.7 (7)	C18-C19-C20	117.9 (8)
C2-N3-C4	126.5 (6)	C19-C20-C15	122.0 (8)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 10$	110.5 (7)	$\mathrm{C} 14-\mathrm{C} 21-\mathrm{N} 22$	102.8 (6)
C4-N3-C10	123.0 (6)	C21-N22-C23	103.0 (6)

$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.2(7)$	$\mathrm{C} 21-\mathrm{N} 22-\mathrm{C} 35$	$113.0(6)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 9$	$123.0(7)$	$\mathrm{C} 23-\mathrm{N} 22-\mathrm{C} 35$	$114.3(5)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$117.7(8)$	$\mathrm{C} 12-\mathrm{C} 23-\mathrm{N} 22$	$103.4(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.2(8)$	$\mathrm{C} 12-\mathrm{C} 23-\mathrm{C} 24$	$109.9(6)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.8(9)$	$\mathrm{N} 22-\mathrm{C} 23-\mathrm{C} 24$	$110.7(6)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$118.3(9)$	$\mathrm{C} 12-\mathrm{C} 23-\mathrm{C} 28$	$118.5(6)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$121.4(8)$	$\mathrm{N} 22-\mathrm{C} 23-\mathrm{C} 28$	$110.5(6)$
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$121.5(8)$	$\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 28$	$103.9(6)$
$\mathrm{N} 3-\mathrm{C} 10-\mathrm{O} 11$	$124.8(7)$	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{O} 25$	$127.4(7)$
$\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 12$	$108.3(6)$	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{N} 26$	$105.6(7)$
$\mathrm{O} 11-\mathrm{C} 10-\mathrm{C} 12$	$126.9(7)$	$\mathrm{O} 25-\mathrm{C} 24-\mathrm{N} 26$	$127.0(7)$
$\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 13$	$103.5(6)$	$\mathrm{C} 24-\mathrm{N} 26-\mathrm{C} 27$	$112.4(7)$
$\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 14$	$109.2(5)$	$\mathrm{N} 26-\mathrm{C} 27-\mathrm{C} 28$	$111.3(7)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 14$	$118.6(6)$	$\mathrm{N} 26-\mathrm{C} 27-\mathrm{C} 34$	$128.2(9)$
$\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 23$	$108.2(6)$	$\mathrm{C} 28-\mathrm{C} 27-\mathrm{C} 34$	$120.0(8)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 23$	$114.7(5)$	$\mathrm{C} 23-\mathrm{C} 28-\mathrm{C} 27$	$106.7(6)$
$\mathrm{C} 14-\mathrm{C} 12-\mathrm{C} 23$	$102.4(6)$	$\mathrm{C} 23-\mathrm{C} 28-\mathrm{C} 29$	$133.2(7)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 2$	$104.1(6)$	$\mathrm{C} 27-\mathrm{C} 28-\mathrm{C} 29$	$120.0(8)$
$\mathrm{C} 12-\mathrm{C} 14-\mathrm{C} 15$	$119.0(5)$	$\mathrm{C} 28-\mathrm{C} 29-\mathrm{C} 30$	$118.7(8)$
$\mathrm{C} 12-\mathrm{C} 14-\mathrm{C} 21$	$105.5(6)$	$\mathrm{C} 29-\mathrm{C} 30-\mathrm{O} 31$	$123.6(8)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 21$	$111.3(6)$	$\mathrm{C} 29-\mathrm{C} 30-\mathrm{C} 33$	$120.7(9)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$123.0(7)$	$\mathrm{O} 31-\mathrm{C} 30-\mathrm{C} 33$	$115.7(8)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 20$	$119.8(7)$	$\mathrm{C} 30-\mathrm{O} 31-\mathrm{C} 32$	$119.9(7)$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 20$	$117.2(8)$	$\mathrm{C} 30-\mathrm{C} 33-\mathrm{C} 34$	$120.5(8)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$121.0(8)$	$\mathrm{C} 33-\mathrm{C} 34-\mathrm{C} 27$	$119.8(8)$

Table S4. Descriptor of the BMLR-QSAR model for the tested compounds as AChE inhibitors.

Entry	ID	Coefficient	s	t	Descriptor
1	0	-47.747	5.290	-9.026	Intercept
2	D_{1}	466.922	52.917	8.824	Min. (>0.1) bond order for atom C

3	D_{2}	85.5021	11.191	7.640	HA dependent HDCA- 2/SQRT(TMSA) (MOPAC PC)
4	D_{3}	-0.164864	0.027	-6.179	Square root of surface area for atom C
$N=12, n=3, R^{2}=0.923, R^{2} \mathrm{cvOO}=0.882, R^{2} \mathrm{cvMO}=0.904, F=31.948, s^{2}=0.026$					
$\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)=-47.747+\left(466.922 \times D_{1}\right)+\left(85.5021 \times D_{2}\right)-\left(0.164864 \times D_{3}\right)$					

Table S5. Observed and estimated activity values for the tested compounds as AChE inhibitors according to the BMLR-QSAR model.

Entry	Compd.	Observed				
		$\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	Observed $\mathrm{IC}_{50}, \mu \mathrm{M}$	Estimated $\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	Estimated $\mathrm{IC}_{50}, \mu \mathrm{M}$	Error $^{\mathrm{a}}$
1	$\mathbf{8 a}$	2.06662	116.58	2.1139	129.99	-13.41
2	$\mathbf{8 b}$	1.13354	13.6	1.12937	13.47	0.13
3	$\mathbf{8 c}$	2.01237	102.89	1.92628	84.39	18.50
4	$\mathbf{8 d}$	1.38561	24.3	1.01604	10.38	13.92
5	$\mathbf{8 e}$	0.525045	3.35	0.512188	3.25	0.10
6	$\mathbf{8 f}$	1.08814	12.25	1.03874	10.93	1.32
7	$\mathbf{8 g}$	0.498311	3.15	0.693192	4.93	-1.78
8	$\mathbf{8 h}$	0.797268	6.27	0.863375	7.30	-1.03
9	$\mathbf{8 i}$	1.59561	39.41	1.63445	43.10	-3.69
10	$\mathbf{8 j}$	1.32181	20.98	1.3381	21.78	-0.80
11	$\mathbf{8 k}$	1.14395	13.93	1.16877	14.75	-0.82
12	$\mathbf{8 1}$	1.34183	21.97	1.47568	29.90	-7.93

${ }^{a}$ Error is the difference between the observed and estimated property values in $\mu \mathrm{M}$ values.

Table S6. Molecular descriptor values of the BMLR-QSAR model for the synthesized compounds as AChE inhibitors.

Entry	Compd.	Descriptors a		
		D_{1}	D_{2}	D_{3}
1	$\mathbf{8 a}$	0.10497	0.1247	59.52144

2	$\mathbf{8 b}$	0.10146	0.11974	52.98071
3	$\mathbf{8 c}$	0.10225	0.13039	55.9192
4	$\mathbf{8 d}$	0.10221	0.11744	54.61403
5	$\mathbf{8 e}$	0.10232	0.11715	57.81774
6	$\mathbf{8 f}$	0.10114	0.12772	56.75511
7	$\mathbf{8 g}$	0.10162	0.11903	55.71342
8	$\mathbf{8 h}$	0.10053	0.12459	54.48833
9	$\mathbf{8 i}$	0.10193	0.12444	53.67995
10	$\mathbf{8 j}$	0.10352	0.11458	54.88521
11	$\mathbf{8 k}$	0.10199	0.10763	47.96379
12	$\mathbf{8 l}$	0.10252	0.12131	54.69956

${ }^{a} D_{1}=\operatorname{Min} .(>0.1)$ bond order for atom C, $D_{2}=$ HA dependent HDCA-2/SQRT(TMSA) (MOPAC PC), $D_{3}=$ Square root of Surface Area for atom C.

Table S7. Descriptor of the BMLR-QSAR model for the tested compounds as BChE inhibitors.

Entry	ID	Coefficient	s	t	Descriptor
1	0	-695.08	92.732	-7.496	Intercept
2	D_{1}	10.5556	0.655	16.119	ZX Shadow / ZX Rectangle
3	D_{2}	2.22981	0.301	7.400	Max. atomic state energy for atom
					O
4	D_{3}	0.0220702	0.004	6.045	Shadow plane XY
$N=12, n=3, R^{2}=0.979, R^{2} \mathrm{cvOO}=0.936, R^{2} \mathrm{cvMO}=0.956, F=122.564, s^{2}=0.005$					
$\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)=-695.08+\left(10.5556 \times D_{1}\right)+\left(2.22981 \times D_{2}\right)+\left(0.0220702 \times D_{3}\right)$					

Table S8. Observed and estimated activity values for the tested compounds as BChE inhibitors according to the BMLR-QSAR model.

Entry	Compd.	Observed	Observed	Estimated	Estimated	Error $^{\mathrm{a}}$
		$\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	$\mathrm{IC}_{50, \mu \mathrm{M}}$	$\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	$\mathrm{IC}_{50, \mu \mathrm{M}}$	
1	$\mathbf{8 a}$	1.91249	81.75	1.83852	68.95	12.80
2	$\mathbf{8 b}$	1.62788	42.45	1.69097	49.09	-6.64

3	$\mathbf{8 c}$	1.85582	71.75	1.80826	64.31	7.44
4	$\mathbf{8 d}$	1.32899	21.33	1.43514	27.24	-5.91
5	$\mathbf{8 e}$	0.750508	5.63	0.678732	4.77	0.86
6	$\mathbf{8 f}$	1.3032	20.1	1.26066	18.22	1.88
7	$\mathbf{8 g}$	0.675778	4.74	0.731632	5.39	-0.65
8	$\mathbf{8 h}$	0.727541	5.34	0.788595	6.15	-0.81
9	$\mathbf{8 i}$	1.54555	35.12	1.58656	38.60	-3.48
10	$\mathbf{8 j}$	1.1329	13.58	1.08186	12.07	1.51
11	$\mathbf{8 k}$	1.00945	10.22	0.960594	9.13	1.09
12	$\mathbf{8 l}$	1.55072	35.54	1.55929	36.25	-0.71

${ }^{a}$ Error is the difference between the observed and estimated property values in $\mu \mathrm{M}$ values.

Table S9. Molecular descriptor values of the BMLR-QSAR model for the synthesized compounds as BChE inhibitors.

Entry	Compd.	Descriptors a		
		D_{1}	D_{2}	D_{3}
1	$\mathbf{8 a}$	0.66053	308.443	98.66
2	$\mathbf{8 b}$	0.70783	308.2048	93.42
3	$\mathbf{8 c}$	0.68051	308.2503	107.2
4	$\mathbf{8 d}$	0.64082	308.3275	101.48
5	$\mathbf{8 e}$	0.59553	308.2474	96.96
6	$\mathbf{8 f}$	0.65798	308.2169	96.54
7	$\mathbf{8 g}$	0.57674	308.25	108.08
8	$\mathbf{8 h}$	0.60684	308.2241	98.88
9	$\mathbf{8 i}$	0.64727	308.312	106.82
10	$\mathbf{8 j}$	0.62421	308.2081	105.48
11	$\mathbf{8 k}$	0.61271	308.1816	108.16
12	$\mathbf{8 l}$	0.61341	308.3524	117.7

${ }^{a} D_{1}=$ ZX Shadow / ZX Rectangle, $D_{2}=$ Max. atomic state energy for atom $\mathrm{O}, D_{3}=$ Shadow plane XY.

Table S10. Observed and estimated activity values for the tested compounds 8a-l as AChE inhibitors according to the 3D-pharmacophore model.

Entry	Compd.	Observed $\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	Observed IC_{50}, $\mu \mathrm{M}$	Estimated $\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	Estimated $\mathrm{IC}_{50,}$ 1
	$\mathbf{8 a}$	2.06662	116.6	2.14848	140.8
2	$\mathbf{8 b}$	1.13354	13.6	1.08505	12.2
3	$\mathbf{8 c}$	2.01237	102.9	1.46648	29.3
4	$\mathbf{8 d}$	1.38561	24.3	0.922511	8.4
5	$\mathbf{8 e}$	0.525045	3.4	0.805378	6.4
6	$\mathbf{8 f}$	1.08814	12.3	1.11632	13.1
7	$\mathbf{8 g}$	0.498311	3.2	0.642735	4.4
8	$\mathbf{8 h}$	0.797268	6.3	0.982	9.6
9	$\mathbf{8 i}$	1.59561	39.4	1.43479	27.2
10	$\mathbf{8 j}$	1.32181	21.0	1.83182	67.9
11	$\mathbf{8 k}$	1.14395	13.9	1.20337	16.0
12	$\mathbf{8 l}$	1.34183	22.0	0.97118	9.4

Table S11. Observed and estimated activity values for the tested compounds $\mathbf{8 a - l}$ as BChE inhibitors according to the 3D-pharmacophore model.

Entry	Compd.	Observed $\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	Observed IC_{50}, $\mu \mathrm{M}$	Estimated $\log \left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	Estimated IC_{50}, 1
	$\mathbf{8 a}$	1.91249	81.8	1.95644	90.5
2	$\mathbf{8 b}$	1.62788	42.5	1.48946	30.9
3	$\mathbf{8 c}$	1.85582	71.7	1.42828	26.8
4	$\mathbf{8 d}$	1.32899	21.3	1.21379	16.4
5	$\mathbf{8 e}$	0.750508	5.6	1.05258	11.3
6	$\mathbf{8 f}$	1.3032	20.1	1.11712	13.1
7	$\mathbf{8 g}$	0.675778	4.7	0.998164	10.0
8	$\mathbf{8 h}$	0.727541	5.3	1.06305	11.6
9	$\mathbf{8 i}$	1.54555	35.1	1.32427	21.1
10	$\mathbf{8 j}$	1.1329	13.6	0.975985	9.5

11	$\mathbf{8 k}$	1.00945	10.2	1.01392	10.3
12	$\mathbf{8 1}$	1.55072	35.5	1.12307	13.3

Fig. S1. IR spectrum of compound $\mathbf{8 a}(\mathrm{KBr}$ pellet).

Fig. S2. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{8 a}$ in $\mathrm{DMSO}-d_{6}$.

Fig. S3. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 a}$ in DMSO- d_{6}.

Fig. S4. IR spectrum of compound $\mathbf{8 b}$ (KBr pellet).

Fig. S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 b}$ in DMSO- d_{6}.

Fig. S6. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 b}$ in DMSO- d_{6}.

Fig. S7. HSQC spectrum of compound $\mathbf{8 b}$ in DMSO- d_{6}.

Fig. S8. IR spectrum of compound $\mathbf{8 c}(\mathrm{KBr}$ pellet) $)$

Fig. S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 c}$ in $\mathrm{DMSO}-d_{6}$.

Fig. S10. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 c}$ in DMSO- d_{6}.

Fig. S11. IR spectrum of compound $\mathbf{8 d}(\mathrm{KBr}$ pellet).

Fig. S12. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 d}$ in DMSO- d_{6}.

Fig. S13. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 d}$ in DMSO- d_{6}.

Fig. S14. IR spectrum of compound $\mathbf{8 e}$ (KBr pellet).

Fig. S15. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{8 e}$ in DMSO- d_{6}.

Fig. S16. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 e}$ in DMSO- d_{6}.

Fig. S17. IR spectrum of compound $\mathbf{8 f}$ (KBr pellet).

Fig. S18. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 f}$ in DMSO- d_{6}.

Fig. S19. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 f}$ in DMSO- d_{6}.

Fig. S20. IR spectrum of compound $\mathbf{8 g}(\mathrm{KBr}$ pellet).

Fig. S21. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{8 g}$ in DMSO- d_{6}.

Fig. S22. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 g}$ in DMSO- d_{6}.

Fig. S23. HSQC spectrum of compound $\mathbf{8 g}$ in DMSO- d_{6}.

Fig. S24. IR spectrum of compound $\mathbf{8 h}(\mathrm{KBr}$ pellet).

Fig. S25. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 h}$ in $\mathrm{DMSO}-d_{6}$.

Fig. S26. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 h}$ in DMSO- d_{6}.

Fig. S27. IR spectrum of compound $\mathbf{8 i}$ (KBr pellet).

Fig. S28. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{8 i}$ in DMSO- d_{6}.

Fig. S29. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 i}$ in DMSO- d_{6}.

Fig. S30. IR spectrum of compound $\mathbf{8 j}$ (KBr pellet).

Fig. S31. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 j}$ in DMSO- d_{6}.

Fig. S32. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 j}$ in DMSO- d_{6}.

Fig. S33. IR spectrum of compound $\mathbf{8 k}$ (KBr pellet).

Fig. S34. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 k}$ in DMSO- d_{6}.

Fig. S35. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 k}$ in DMSO- d_{6}.

Fig. S36. IR spectrum of compound $\mathbf{8 1}$ (KBr pellet).

Fig. S37. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{8 1}$ in DMSO- d_{6}.

Fig. S38. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{8 1}$ in DMSO- d_{6}.

Fig. S39. Dose-response curve for the tested compounds against RPE1 (retinal pigment epithelium) cell line.

Fig. S40. BMLR-QSAR model plot of correlations representing the observed $v s$. predicted $\log /\left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$ values for the tested compounds as AChE inhibitor (compound 8 d is an outlier).

Fig. S41. BMLR-QSAR model plot of correlations representing the observed $v s$. predicted $\log /\left(\mathrm{IC}_{50}, \mu \mathrm{M}\right)$ values for the tested compounds as BChE inhibitor.

Fig. S42. (A) Constraint distances " $\mathrm{H}-1-\mathrm{H}-2=6.872, \mathrm{H}-1-$ PosIon $=5.599, \mathrm{H}-1-$ $\mathrm{HBA}=5.148, \mathrm{H}-2-\mathrm{HBA}=4.747, \mathrm{H}-2-$ PosIon $=8.062, \mathrm{HBA}-\operatorname{PosIon}=3.514 \AA "$; (B) Constraint angles " $\mathrm{H}-1-\mathrm{H}-2-$ PosIon $=43.12, \mathrm{H}-2-\mathrm{H}-1-\mathrm{HBA}=43.65$, HBA -$\mathrm{H}-1-$ PosIon $=37.87^{\circ}$ " of the generated 3D-pharmacophore for the tested compounds $\mathbf{8 a - l}$ as AChE inhibitor which contains two hydrophobics (H-1, H-2; light blue), one hydrogen bonding acceptor (HBA; green) and one positive ionizable (PosIon; red).

Fig. S43. 3D-pharmacophore model mapped on the tested compounds 8a-l as AChE inhibitor.

Fig. S44. (A) Constraint distances " $\mathrm{H}-\mathrm{HBA}=4.695, \mathrm{H}-\mathrm{HBD}=7.860$, $\mathrm{HBA}-\mathrm{HBD}=$ $3.326 \AA$ "; (B) Constraint angle " $\mathrm{H}-\mathrm{HBD}-\mathrm{HBA}=13.64^{\circ}$ " of the generated 3Dpharmacophore for the tested compounds $\mathbf{8 a - l}$ as BChE inhibitor which contains one hydrophobic (H; light blue), one hydrogen bonding acceptor (HBA; green) and one hydrogen bonding donor (HBD; purple).

Fig. S45. 3D-pharmacophore model mapped on the tested compounds $\mathbf{8 a}-\mathbf{l}$ as BChE inhibitor.

