Supplemental Information to:

Spectroscopic analysis of Eu³⁺ doped Silica-Titania-Polydimethylsiloxane hybrid ORMOSILs

Manju Gopinath R. J.^a, Subash Gopi^a, Sanu Mathew Simon^a, A. C. Saritha ^a, P. R. Biju^a, Cyriac Joseph^a, N.V. Unnikrishnan^{a*}

^aSchool of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, 686560, India *Corresponding author: E-mail address:nvu100@yahoo.com (N.V. Unnikrishnan)

Fig.S1 XRD pattern of pure and Eu³⁺ doped SiO₂-TiO₂-PDMS ORMOSIL samples

Fig.S2 TG curves of pure and Eu³⁺ doped SiO₂-TiO₂-PDMS ORMOSIL samples

Fig.S3 Excitation spectra of Eu³⁺ doped SiO₂-TiO₂-PDMS ORMOSIL samples

Section S1: The equations and methods of PSB analysis

The rate of multiphonon relaxation from the excited ${}^{5}L_{6}$ level to the lowest excited state, ${}^{5}D_{0}$ is given by

$$W_{mp} = W_0 e^{-\alpha \Delta E} \longrightarrow (1)$$

where W_0 is the experimental parameter corresponding to the decay rate at zero phonon emission. ' α ' is a host dependent parameter and is given by

$$\alpha = \frac{(\hbar\omega)^{-1} \left[\ln\left(\frac{p}{g(n+1)}\right) - 1 \right]}{(2)} \rightarrow (2)$$

Here, p is the phonon number, n is the Planck's distribution function and g is the electron – phonon coupling strength which is estimated to be the ratio between the intensity of pure electronic transition (PET) and phonon side band (PSB).

Also,
$$p = \frac{\Delta E}{\hbar \omega} \rightarrow (3)$$
 and
 $n = (e^{\hbar \omega/kT} - 1)^{-1} \rightarrow (4)$

 ΔE is the energy gap between the lowest excited state ${}^{5}D_{0}$ and the higher excited levels ${}^{5}D_{1}$, ${}^{5}D_{2}$ and ${}^{5}D_{3}$ which is approximated as 1750, 2500 and 2800 cm⁻¹.

Section S2: The equations used to calculate the radiative parameters

The JO intensity parameters, Ω_{λ} (λ = 2, 4, 6) can be used to calculate the important radiative parameters such as transition probability (A), radiative life time (τ_R) and branching ratio (β_R) for the emission transitions of Eu³⁺ doped glasses.

The transition probability for the transition $\psi_J \rightarrow \psi'_{J'}$ is given by

$$A (\psi_{J}, \psi'_{J'}) = A_{ed} + A_{md} \rightarrow (1)$$

$$= \left[\frac{64\pi^{4}\nu^{3}}{3h(2J'+1)} \right] \left[\frac{n(n^{2}+2)^{2}}{9} \right] S_{ed} + \left[\frac{64\pi^{4}\nu^{3}}{3h(2J+1)} \right] S_{md} \rightarrow (2)$$

Thus the total transition probability can be calculated using

$$A_T(\psi_J) = \sum_{\psi_J}^{\psi'_{J'}} A(\psi_J, \psi'_{J'}) \longrightarrow$$
(3)

But the radiative lifetime of an excited state is related to the total transition probability and is given by

$$\tau_R(\psi_J) = [A_T(\psi_J)]^{-1} \longrightarrow (4)$$

Also the fluorescent branching ratio $\beta_R (\psi_J, \psi'_{J'})$ for a transition from the excited state $\psi'_{J'}$ to the lower state ψ_J is given by

$$\beta_{R}\left(\psi_{J},\psi_{J}^{'}\right) = \frac{A\left(\psi_{J},\psi_{J}^{'}\right)}{A_{T}\left(\psi_{J}\right)} \longrightarrow (5)$$

and the branching ratio also helps to predict the radiative intensities of all the emission bands originating from the given excited state.