Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for:

Selective and clean synthesis of amino H-phosphinic acids from hypophosphorus acid

by phospha-Mannich reaction

Peter Urbanovský, Jan Kotek, Ivana Císařová and Petr Hermann*

Department of Inorganic Chemistry, Faculty of Science, Universita Karlova (Charles University), Hlavova 8/2030, 12843 Prague 2, Czech Republic. Tel.: +420-22195-1263, fax: +420-22195-1253, e-mail: <u>petrh@natur.cuni.cz</u>

Content:

1. Reaction Scope Investigations 2. Mechanistic Studies Investigation of *N*-hydroxymethylated aminomethyl-*H*-phosphinic acid (Figures S19–S22)......20–25 3. Syntheses and Characterization Data

Supplementary Figures and Tables

<u>1. Reaction Scope Investigations</u>

Table S1, Figure S1

Influence of water content on reaction of Bn₂NH, paraformaldehyde and H₃PO₂ in acetic acid (0.25 mmol of amine and molar ratio 1:2:1.1, respectively; AcOH (2 ml); 40 °C; after 2, 24, and 48 h; conversion determined by ³¹P NMR).

 $Bn_2N-H + (CH_2O)_n + H_3PO_2 \xrightarrow{AcOH: H_2O = x: y} Bn_2N \xrightarrow{O}_{H-H} I : 2 : 1.1$ molar ratio

Water content	Conversion, %			
	5 h	24 h	48 h	
< 1%	88	90	91	
25 %	44	86	91	
50 %	22	71	84	
75 %	6	46	63	
100 %	0	24	42	

Table S2, Figure S2

Influence of HCl content on reaction of Bn₂NH, paraformaldehyde and H₃PO₂ in acetic acid (0.5 mmol of amine and molar ratio 1:2:1.1, respectively; AcOH (2 ml); 40 °C, 24 h, conversion determined by ³¹P NMR).

HCl equiv.	Conversion, %		
0	90		
1	33		
~ 10*	< 5		

*By addition of conc. HCl, water content in reaction was < 1 %

³¹P NMR spectra:

^{37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0} f1 (ppm)

¹H (top) and ³¹P (bottom) NMR spectra of the aq. ammonia fraction after chromatography on Dowex 50 column. Elution was done with 10% aq. pyridine (removal of compounds with no amine groups and (*N*,*N*-dibenzyl-amino)methyl-*H*-phosphinic acid**1**) followed by conc. aq. NH₃:EtOH = 1:5 (elution of all other amines). The spectra (not referenced) show mixture of *N*-methylated *N*,*N*-dibenzyl-amine and bis(*N*,*N*-dibenzyl-aminomethyl)phosphinic acid in ratio ~8:1. Characterisation data are identical to published.¹ The sample originated from reaction of (Bn₂NH:CH₂O:aq. H₃PO₂ = 1:2:1.1 with 1 equiv. HCl present as hydrochloride salt of starting amine, AcOH as solvent, 24 hours, 40 °C).

¹G. Tircso, A. Benyei, R. Kiraly, I. Lazar, R. Pal, and E. Brucher, Eur. J. Inorg. Chem. 2007, 701–713.

³¹P NMR spectrum of reaction mixture of *N*,*N*-dibenzyl-amine, paraformaldehyde and H₃PO₃ (0.25 mmol of amine, molar ratio 1:2:1.1, respectively; AcOH (2 ml); 36 h at 40 °C).

Bn₂NCH₂PO₃H₂ was identified at $\delta_P \sim 7$ ppm (triplet), H₃PO₃ corresponds to dublet at $\sim 2 + 7.5$ ppm and H₃PO₄ singlet at ~ 0 ppm (used as an internal reference).

Figure S5

³¹P NMR spectrum (not referenced) of reaction mixture of *N*,*N*-dibenzyl-amine, paraformaldehyde and (*N*,*N*-dibenzyl-amino)-methyl-*H*-phosphinic acid (0.5 mmol of phosphinic acid, molar ratio 1.1:2:1, respectively; AcOH (2 ml); 36 h at 40 °C). Reaction was not in equilibrium but molar ratio of products (C–P–C and R–PO₃H₂) remained the same in approx. 1:1.1 molar ratio, respectively.

¹H, ³¹P and ¹⁹F NMR spectra of reaction mixture with (*N*-benzyl)-2,2,2-trifluoroethylamine (*a*) and bis(2,2,2-trifluoroethyl)amine (*b*), paraformaldehyde and 50% aq. H_3PO_2 in molar ratio 1:2:1.1, respectively (0.5 mmol of amine, AcOH (2 ml), 1 d, 40 °C). Spectra were not referenced.

The integrated signals in ¹H NMR spectra correspond to *N*-methylated amines. ³¹P NMR spectra show majority (> 60 %) of H₃PO₃ present and small amount of amino phosphonic acid (~5 %). The ¹⁹F NMR spectra show *N*-methylated amines (${}^{3}J_{FH} \sim 9.0$ Hz (*a*) and ~ 9.5 Hz (*b*), which are similar to published values²) and amino-phosphonic acid (${}^{3}J_{FH} \sim 9.2$ Hz (*a*) and ~ 8.2 Hz (*b*)).

² (a) H. Mimura et al., J. Fluorine Chem. 2010, 131, 477–486. (b) H. Burger et al., J. Fluorine Chem. 1989, 44, 147–153.

³¹P NMR spectrum of *N*,*N*-dibenzyl-amine, acetaldehyde and 50% aq. H₃PO₂ (0.5 mmol of amine, in molar ratio

Figure S8

³¹P NMR spectra of *N*,*N*-dibenzyl-amine, benzaldehyde and 50% aq. H₃PO₂ (0.5 mmol of amine, in molar ratio 1:2:1.1, respectively; AcOH (2 ml), 2 d at 60 °C (bottom) and 3 d at 80 °C (top)). Spectra were not referenced.

³¹P NMR spectra of *N*,*N*-dibenzyl-amine, trifluoroacetaldehyde monohydrate and 50% aq. H₃PO₂ (0.5 mmol of amine, in molar ratio 1:2:1.1(bottom), respectively, or 0:2:1.1 (top), respectively; AcOH (2 ml), 2 days at 80 °C). Spectra were not referenced.

³¹P NMR spectrum of *N*-cyclohexylamine, paraformaldehyde and 50% aq. H₃PO₂ (0.5 mmol of amine, in molar ratio 1:2.2:2.2, respectively; AcOH (2 ml), 1 d, RT). Spectrum was not referenced.

Figure S11

 31 P NMR spectrum of (*N*-benzyl)-aminomethylphosphonic acid, paraformaldehyde and 50% aq. H₃PO₂ (0.5 mmol of amine, in molar ratio 1:2:1.1, respectively; AcOH (2 ml), 1 d, 40 °C). Spectrum was not referenced. Molar ratio of mono- and bis-substituted phosphinic acids is ~3:1 (*i.e.* blue-to-green in the Figure label).

³¹P NMR spectrum of (*N*,*N*'-dibenzyl)-ethylenediamine, paraformaldehyde and 50% aq. H_3PO_2 (0.5 mmol of amine, in molar ratio 1:4:2.2, respectively; AcOH (10 ml), 1 d, 40 °C). Spectrum is not referenced. Molar ratio of *N*-methylated mono-phosphinic acid to H_3PO_3 is ~1:1.

³¹P NMR spectra of (*N*,*N*^{\prime}-dibenzyl)-diethylenetriamine (*a*) or (*N*,*N*^{\prime}-dibenzyl)-dipropylenetriamine (*b*) or (*N*,*N*^{\prime}-dibenzyl)-dihexylenetriamine (*c*) with paraformaldehyde, and 50% aq. H₃PO₂ (0.25 mmol of amine, in molar ratio 1:6:3.3, respectively; AcOH (2 ml), 1 d, 40 °C). Spectra were not referenced.

³¹P NMR spectrum of piperazine, paraformaldehyde and 50% aq. H₃PO₂ (0.5 mmol of amine, in molar ratio 1:4:2.2, respectively; AcOH (2 ml), 1 d, 40 °C). Spectrum was not referenced.

³¹P NMR spectra of tacn, paraformaldehyde and 50% aq. H₃PO₂ (0.25 mmol of amine, in molar ratio 1:2.2:1 (top) and 1:2.2:3 (bottom), respectively; AcOH (2 ml), 1 d, 40 °C). Spectra were referenced to $\delta_P(H_3PO_2) = 6.0$ ppm.

³¹P NMR spectra of cyclen, paraformaldehyde and 50% aq. H₃PO₂ (0.25 mmol of amine, in molar ratio from 1:<u>1</u>:4 (bottom) to 1:4:4 (top), respectively; AcOH (2 ml), after 4 h each, 40 °C). Spectra were referenced to $\delta_P(H_3PO_2)$ ~9 ppm. Some amino-H-phosphinic acid signals (blue circle) are visible only in the spectrum (4) at ~16 ppm as a broad dublet.

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 f1 (ppm) 8 7 6 5 4 з 2 1 ò

2. Mechanistic Studies

Figure S17

¹H and ¹³C{¹H} NMR spectra of paraformaldehyde (*a*) and its mixtures with Me₂NH (as 40% aq. solution) after gradual addition of paraformaldehyde (in molar ratio 1:1 (*b*), 2:1 (*c*) and 3:1 (*d*), respectively; next addition of paraformaldehyde always after 1 d, 40 °C). Solutions were heated up to 40 °C in AcOH and measured with a D₂O + *t*BuOH in insert tube. Spectra show formation of two intermediates, (CH₃)₂NCH₂OR and [(CH₃)₂N(CH₂OR)₂]⁺ (where R = H or Ac).

Stacked ¹H (*a*) and ³¹P (*b*) NMR spectra of reaction of Me₂NH (as 40% aq. solution), paraformaldehyde and H₃PO₂ in the final molar ratio 1:1.5:2 in D₂O (referenced to $\delta_{\rm H}(\rm HDO) = 4.70$ ppm and $\delta_{\rm P}(\rm H_3PO_2) = 10.0$ ppm). Due to different pH's, ¹H NMR signals of the same compounds appear with different chemical shifts in spectrum (*I*) than in spectrum (*2*) etc. The ³¹P NMR spectra show difficult splitting due to ¹H-to-²D exchange.

(*I*) 1 equiv. 40% aq. Me₂NH and 1.5 equiv. $(CH_2O)_n$ in D₂O at 180 min and 40 °C. (*2*) Addition of 1 equiv. 50% aq. H₃PO₂ to mixture in (*I*), 10 min at RT. (*3*) 240 min at 40 °C. (*4*) 4 d at 40 °C.

³¹P NMR spectrum after addition of H₃PO₂ (1 equiv.) to a pre-mixed mixture of Me₂NH (as 40% aq. solution) and paraformaldehyde (in molar ratio 1:2; after 1 d at 40 °C in AcOH). The spectrum was measured after reaction time of 5 h at 40 °C. It showed formation of two *H*-phosphinic acids, $(CH_3)_2NCH_2PO_2H_2$ and $[(CH_3)_2N(CH_2OR)(CH_2PO_2H_2)]^+$ (where R = H or Ac). Spectrum was not referenced.

The ¹H, ¹³C{¹H}, ³¹P and 2D (HSQC and HMBC) NMR spectra of mixtures after addition of H₃PO₂ (2.5 equiv.) to a mixture of Me₂NH (as 40% aq. solution) and paraformaldehyde in AcOH, see Figure S19. The spectra were measured after reaction time of 30 min and 40 °C. The spectra show formation of two *H*-phosphinic acids, $(CH_3)_2NCH_2PO_2H_2$ and $[(CH_3)_2N(CH_2OR)(CH_2PO_2H_2)]^+$ (where R = H or Ac). The ³¹P NMR spectrum was not referenced. For a clear comparison of the reactions composition, overlays (denoted as (*x*)) of ¹H and ¹³C{¹H} NMR spectra of pure paraformaldehyde (after 1 d at 40 °C) in AcOH with the spectra of the intermediate are shown.

21

Formation of two *H*-phosphinic acids after addition of H_3PO_2 (2.5 equiv.) to pre-mixed mixture of Me_2NH (as 40% aq. solution) and paraformaldehyde (in molar ratio 1:2, respectively; 1 d at 40 °C). The ³¹P NMR spectra were measured regularly (reaction at 40 °C). Both *H*-phosphinic acids, (CH₃)₂NCH₂PO₂H₂ and [(CH₃)₂N(CH₂OR)(CH₂PO₂H₂)]⁺ (where R = H or Ac), reach an equilibrium after ~30 min, and no change in ³¹P NMR spectra was observed later.

The ³¹P NMR spectra (in AcOH) of a mixture prepared by reaction of H₃PO₂ (1 equiv.), Me₂NH (1 equiv.) and paraformaldehyde (2 equiv.) similarly as in Figures S18–21 (1 d at 40 °C, Mixture **A**). (*I*) Temperature of mixture **A** was elevated to 80 °C for 3.5 h. (2) Addition of conc. aq. HCl (~10–20 equiv.) to mixture (*I*); reaction time 2 h at 40 °C. (*3*) Addition of water excess (to get 20% v/v) to mixture (2); reaction time 20 min at 40 °C. (*4*) Addition of more water (another ~10% v/v) to mixture (*3*); reaction time 15 min at 40 °C. The ³¹P NMR spectra were not referenced. Spectra of mixture (*I*) showed very slow hydrolysis of [(CH₃)₂N(CH₂OR)(CH₂PO₂H₂)]⁺ (where R = H or Ac) to (CH₃)₂NCH₂PO₂H₂ at 80 °C. The addition of HCl did not alter significantly the composition of the reaction mixture (see mixture (*2*)). Addition of water quickly hydrolysed the cationic intermediate to the desired *H*-phosphinic acid (mixtures (*3*) and (*4*)). If analogous experiment was done with no HCl added, the intermediate was hydrolysed to *H*phosphinic acid easily with water excess and mild heating (40 °C).

15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 f1 (ppm)

The ¹H NMR spectrum of $(Me_2N=CH_2)^+Cl^-$ immediately after dissolution in AcOH- d_4 .

Figure S24

The ¹H and ³¹P NMR spectra of reaction mixture of iminium salt $(Me_2N=CH_2)^+Cl^-$ and aq. H₃PO₂ (0.25 mmol of the iminium salt, molar ratio 1:1, AcOH-*d*₄ (0.4 ml), 40 °C). The ³¹P NMR spectra are referenced to $\delta_P(H_3PO_2) = 10.0$ ppm.

$$Me_{2}N = CH_{2} + aq. H_{3}PO_{2} - AcOH-d_{4} \rightarrow Me_{2}N \qquad P-H + (Me_{2}N) \qquad P-H$$

In the spectrum (2) and on-wards, $\delta_{\rm H}$ of the same compounds are different than in (1) due to addition of aq. H₃PO₂. Complicated splitting of ³¹P NMR signals is caused by ¹H–²D exchange; thus, H₃PO₂ signals split by deuterium are not marked in the ³¹P NMR spectra.

(*I*) $(Me_2N=CH_2)^+Cl^-$ (1 equiv.) in AcOH-*d*₄, 90 min, 40 °C. (*2*) Measured immediately after addition of 50% aq. H₃PO₂ (1 equiv.) to solution in (*I*). (*3*) Additional 15 min at 40 °C. (*4*) Additional 85 min at 40 °C. (*5*) After 1 d at 40 °C.

The ¹H and ³¹P NMR spectra of reaction mixture containing iminium salt (Me₂N=CH₂)⁺Cl⁻ and anhydrous H₃PO₂ (0.25 mmol of the iminium salt, molar ratio 1:1, AcOH- d_4 (0.4 ml), 40 °C). Referenced to δ_P (H₃PO₂) = 10.0 ppm. The ³¹P NMR spectra contain complicated ³¹P–²D signal splitting.

(1) Measured immediately after mixing and dissolution of $(Me_2N=CH_2)^+Cl^-$ and solid H₃PO₂ in AcOH- d_4 . (2) After 60 min at 40 °C.

The ¹H and ³¹P NMR spectra of a mixture of $(Me_2N)_2CH_2$, anhydrous H_3PO_2 and D_2O (0.25 mmol of amine, molar ratio 1:1:4, AcOH- d_4 (0.4 ml), 40 °C); see description of spectra for more details. The³¹P NMR spectra were referenced to $\delta_P(H_3PO_2) = 10.0$ ppm and they show complicated ³¹P–²D signal splitting. Overall final conversion to *H*-phosphinic and bis-substituted phosphinic acids (*i.e.* C–P–C compounds) was ~50 %; thus, 0.5 equiv. of Me₂NH remained unreacted as no more "formaldehyde" was available.

(1) Recorded immediately after dissolution of $(Me_2N)_2CH_2$ with AcOH- d_4 . (2) Recorded after addition anhydrous H_3PO_2 (1 equiv.) to mixture (1). (3) After 120 min at 40 °C. (4) Measured immediately after addition of D₂O (4 equiv.) into mixture (3). (5) After 1 day at 40 °C.

Overlay of ¹H NMR spectra of mixture of decomposed (Me₂N)₂CH₂ (*i.e.* mainly to $[Me_2N=CH_2]^+$ and Me₂NH are present) and anhydrous H₃PO₂ (in molar ratio 1:1, in AcOH-*d*₄) before (**black**) and immediately after (**red**) addition of D₂O (4 equiv.). The signal intensity of iminium cation was changed due to its hydrolysis with D₂O and simultaneous formation of Me₂NCH₂OR (R = H or Ac). For more signals assignment, see Figure S26.

8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 f1 (ppm)

BnNH–(**CH**₂)_{*n*}–**NHBn** and **BnNH**–(**CH**₂)_{*n*}–**NH**–(**CH**₂)_{*n*}–**NHBn** (n = 2 for Bn₂en and Bn₂dien-triamine, n = 3 for Bn₂prop-diamine and Bn₂diprop-triamine, and n = 6 for Bn₂hex-diamine and Bn₂dihex-triamine).

<u>General procedure</u> was reproduced from literature³ with few applied changes. Mixture of the corresponding amine (1 equiv.), PhCHO (2.2 equiv.) and triethylamine (3 or 4 equiv., see Table S3) in MeOH (~120 mL) was left to react at room temperature for 6 h. Then, the mixture was cooled to 0 °C in ice bath and NaBH₄ (3 equiv.) was gradually added to an open reaction vessel. The reaction mixture was stirred at room temperture for 3 h and then was quenched with 1:1 aq. HCl (~2 mL). The solvents were evaporated to give an oily residue. Conc. aq. HCl (~20 mL) was added and the products were solidified after sonification. The product hydrochlorides were filtered off, washed twice with 1:1 aq. HCl (~10 mL), thrice with Et₂O (~10 mL) and dried in an oven (30 min., 100 °C). Yields are given in Table S3 and elementary analyses are given in Table S4. A single crystal of Bn₂dien trihydrochloride was obtained by acetone vapour diffusion into aqueous solution of the Bn₂dien hydrochloride.

The amines in their acetate form were obtained on Dowex 1 in OH⁻-form (50 ml, 4×8 bed). The hydrochloride salts were dissolved in 10% AcOH (~20 ml), the solutions were applied on the column and the column was eluted with 20% AcOH (~150 ml). The eluates were evaporated to dryness *in vacuo* and the oily residues were directly used in the phospha-Mannich reaction.

Table S3

Starting amine	Mass of	Volume of TEA	Volume	Mass of	Yield of HCl
	amine	(mL) and its equiv.	of PhCHO	NaBH_4	salt (%)
	(g)	in parenthesis	(mL)	(g)	
H ₂ N-(CH ₂) ₃ -NH ₂	0.70	3.9 (3)	2.2	1.0	60
H ₂ N-(CH ₂) ₆ -NH ₂	0.60	2.2 (3)	1.2	0.6	77
$[H_2N-(CH_2)_2-]_2NH$	1.00	5.4 (4)	2.3	1.1	89
$[H_2N-(CH_2)_3-]_2NH$	0.70	3.0 (4)	1.3	0.6	62
$[H_2N-(CH_2)_6-]_2NH$	1.50	3.9 (4)	1.6	0.8	84

Reductive amination of alkyldiamines or dialkyltriamines with benzaldehyde, triethylamine and sodium boronhydride.

³T. Pirali, G. Callipari, E. Ercolano, A. A. Genazzani, G. B. Giovenzana, and G. C. Tron, *Org. Lett.* **2008**, *10*, 4199–4202.

Table S4

Elementary analyses of prepared N-benzylated secondary polyamines.

Compound	C (calc)	H (calc)	N (calc)	Cl (calc)
BnHN-(CH ₂) ₃ -NHBn·2HCl	61.87 (62.39)	7.13 (7.39)	8.56 (8.56)	21.99 (21.66)
BnHN-(CH ₂) ₆ -NHBn·2HCl	64.81 (65.03)	7.79 (8.19)	7.52 (7.58)	19.92 (19.19)
[BnHN-(CH ₂) ₂ -] ₂ NH·3HCl·3/2NaCl	45.51 (45.00)	5.91 (5.87)	8.86 (8.75)	31.85 (<i>33.20</i>)
[BnHN–(CH ₂) ₃ –] ₂ NH·3HCl	56.85 (57.08)	7.44 (7.66)	9.91 (9.98)	25.57 (25.27)
$[BnHN-(CH_2)_6-]_2NH\cdot 3HCl\cdot 3/2H_2O$	58.70 (58.70)	8.25 (8.90)	7.77 (7.90)	21.76 (19.99)

1,3,5-tribenzyl-1,3,5-triazacyclohexane

Synthesis was reproduced by published procedure.⁴ Final product was recrystallized from hot toluene to remove traces of water.

(N-Benzyl)-aminomethyl-H-phosphinic acid.

In 250-ml round-bottom flask, solid ("anhydrous") H₃PO₂ (12.5 g, 0.19 mol, 1 equiv.) was dissolved in toluene (~150 ml) and Me₃SiOEt (60 ml, 0.38 mol, 2 equiv.) was slowly added. Mixture was stirred at room temperature for 1 h and then *s*-triazine (*i.e.* 1,3,5-tribenzyl-1,3,5-triazacyclohexane; 18.0 g, 0.05 mol, 0.37 equiv.) was added. Suspension was stirred vigorously and heated at 50 °C (at the end of the reaction, the suspension dissolved) for 18 h. Then, 5% aq. NH₃ (25 ml) was added and mixture was stirred at 50 °C for another 30 min. The aqueous phase of biphasic mixture was collected and the organic phase was re-extracted with 5% aq. NH₃ (2 × 25 ml). The combined aqueous phases were then washed with toluene (25 ml). The aqueous phase was concentrated *in vacuo*. An oily residue was purified on strong cation exchanger (Dowex 50, 5×20-ml bed). Column was washed with water and product was eluted off with 10% aq. pyridine. Fractions containing pure product were combined and evaporated to dryness. An oily residue was dissolved on hot MeOH and left to crystallize on slow cooling of the solution in fridge. For faster crystallization, MeOH solution of the product was overlaid with Et₂O. Final product was obtained in a form of white polycrystalline powder. Total yield was 8.96 g, 25 % (for **M** · ¼**H**₂**O**). A single crystal was prepared by a slow cooling of boiling MeOH solution of the product.

⁴A. Makhloufi, W. Frank, and C. Ganter, *Organometallics* **2012**, *31*, 2001–2008.

¹**H** NMR (D₂O + *t*BuOH, pD = 4.9 + 0.4): 3.14 (P–C<u>H</u>₂–N, d, ²*J*_{HP} 10.9, ³*J*_{HH} 1.9, 2H), 4.34 (Ph–C<u>H</u>₂–N, s, 2H), 7.15 (<u>H</u>–P, d, ¹*J*_{HP} 545.2, ³*J*_{HH} 1.9, 1H), 7.45–7.56 (Ph, m, 5H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 4.9 + 0.4): 46.6 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 86.0), 53.4 (Ph–C<u>H</u>₂–N, d, ³*J*_{CP} 6.6), 130.0 (*o*-Ph), 130.5 (*p*-Ph), 130.7 (*m*-Ph), 131.0 (*i*-Ph)

³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 4.9 + 0.4): 11.6 (dt, ¹*J*_{PH} 545.1, ²*J*_{PH} 10.9)

MS(+): 208 (208, [M+Na]⁺), 371 (371, [2M+H]⁺), 393 (393, [2M+Na]⁺), 556 (556, [3M+H]⁺) **MS**(-): 739 (739, [4M-H]⁻)

HRMS(+) (found (*calc*)): 186.0679 (186.0678, $C_8H_{13}NO_2P$), 371.1255 (371.1290, $C_{16}H_{25}N_2O_4P_2$)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.74 {5}, 0.68 {10}, 0.63 {20}, 0.55 {35}

EA (found (*calc* M · ¼H₂O)): C 50.96 (50.66), H 6.05 (6.64), N 7.35 (7.39), P 16.37 (16.33)

General procedure for secondary amines in Table 1 in the paper text.

(N,N-Dibenzyl)-aminomethyl-H-phosphinic acid 1.

Procedure **B**.

From 192 μ l (1.0 mmol) of Bn₂NH. Product crystallized after dissolving in boiling acetone and then was filtered off, washed twice with Et₂O and dried on air. White powder of **1** (214 mg, 78 %). A single crystal was prepared by a slow cooling of hot acetone solution of **1**.

Characterization data were identical as published.⁵

⁵ J. Kotek, P. Lebdušková, P. Hermann, L. Vander Elst, R. N. Muller, C. F. G. C. Geraldes, T. Maschmeyer, I. Lukeš, and J. A. Peters, *Chem. Eur. J*, **2003**, 9, 5899–5915.

(N,N-Dimethyl)-aminomethyl-H-phosphinic acid 2.

Procedure A.

From 113 μ l (1.0 mmol) of 40% aq. Me₂NH. Product partially crystallized upon standing at room temperature.

Hygroscopic oil with a few crystals (117 mg, 95 %).

A single crystal was obtained on standing the oil of 2 for several weeks.

¹**H** NMR (D₂O + *t*BuOH, pD = 2.8 + 0.4): 3.02 (N–C<u>H</u>₃, d, ⁴*J*_{HP} 0.9, 6H), 3.30 (P–C<u>H</u>₂–N, dd, ²*J*_{HP} 10.4, ³*J*_{HH} 1.7, 2H), 7.23 (<u>H</u>–P, dt, ¹*J*_{HP} 547.5, ³*J*_{HH} 1.7, 1H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 2.8 + 0.4): 45.8 (N–<u>C</u>H₃, d, ${}^{3}J_{CP}$ 4.8), 84.5 (P–<u>C</u>H₂–N, d, ${}^{1}J_{CP}$ 84.5)

³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 2.8 + 0.4): 9.7 (dt, ${}^{1}J_{PH}$ 548.1, ${}^{2}J_{PH}$ 10.4)

MS(+): 124 (124, [M+H]⁺), 247 (247, [2M+H]⁺)

MS(-): 122 (122, [M–H]⁻), 245 (245, [2M–H]⁻)

HRMS(+) (found (*calc*)): 124.0506 (*124.0527*, C₃H₁₁NO₂P), 247.0941 (*247.0977*, C₆H₂₁N₂O₄P₂)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.69 {5}, 0.48 {10}, 0.31 {20}, 0.28 {35}

(N,N-Diethyl)-aminomethyl-H-phosphinic acid 3.

Procedure A.

From 103 µl (1.0 mmol) of Et₂NH.Viscous oil (140 mg, 93 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 1.7 + 0.4): 1.33 (N–CH₂–C<u>H</u>₃, t, ³J_{HH} 7.3, 6H), 3.26 (P–C<u>H</u>₂–N, dd, ²J_{HP} 10.8, ³J_{HH} 1.8, 2H), 3.28–3.47 (N–C<u>H</u>₂–CH₃, m, 4H), 7.25 (<u>H</u>–P, dt, ¹J_{HP} 547.1, ³J_{HH} 1.6, 1H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 1.7 + 0.4): 8.9 (N–CH₂–<u>C</u>H₃), 50.5 (N–<u>C</u>H₂–CH₃, d, ³J_{CP} 4.2), 51.7 (P–<u>C</u>H₂–N, d, ¹J_{CP} 84.9) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.7 + 0.4): 10.4 (dt, ¹J_{PH} 547.7, ²J_{PH} 10.8) MS(+): 152 (152, [M+H]⁺), 303 (303, [2M+H]⁺) MS(-): 150 (150, [M–H]⁻), 301 (301, [2M–H]⁻) HRMS(+) (found (*calc*)): 152.0815 (*152.0840*,C₅H₁₅NO₂P), 303.1558 (*303.1603*, C₁₀H₂₉N₂O₄P₂) TLC (conc. aq. NH₃: EtOH = 1:{x}): 0.79 {5}, 0.57 {10}, 0.45 {20}, 0.42 {35} (N,N-Diisopropyl)-aminomethyl-H-phosphinic acid 4.

Procedure A.

From 140 μ l (1.0 mmol) of *i*Pr₂NH. Product partially crystallized upon standing at room temperature. Viscous oil with a few crystals (168 mg, 94 %).

A single crystal was prepared on standing the oil of **4** for several weeks.

¹**H** NMR (D₂O + *t*BuOH, pD = 1.8 + 0.4): 1.31–1.46 (N–CH(–C<u>H</u>₃)₂, m, 12H), 3.81 (N–C<u>H</u>(–CH₃)₂, sept, ³J_{HH} 6.4, 2H), 3.22 (P–C<u>H</u>₂–N, dd, ²J_{HP} 11.2, ³J_{HH} 1.8, 2H), 7.22 (<u>H</u>–P, dt, ¹J_{HP} 552.6, ²J_{HH} 1.4, 1H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 1.8 + 0.4): 16.9 + 18.7 (N–CH(–<u>C</u>H₃)₂), 47.4 (P–<u>C</u>H₂–N, d, ¹J_{CP} 83.0), 57.6 (N– <u>C</u>H(–CH₃)₂, d, ³J_{CP} 2.7) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.8 + 0.4): 13.1 (dt, ¹J_{PH} 552.8, ²J_{PH} 11.2) MS(+): 180 (180, [M+H]⁺), 360 (360, [2M+H]⁺) MS(–): 178 (178, [M–H]⁻), 358 (358, [2M–H]⁻) HRMS(+) (found (*calc*)): 180.1114 (*180.1153*,C₇H₁₉NO₂P), 359.2173 (*359.2229*, C₁₄H₃₇N₂O₄P₂) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.79 {5}, 0.72 {10}, 0.57 {20}, 0.55 {35}
(N,N-Dicyclohexyl)-aminomethyl-H-phosphinic acid 5.

Procedure **B**.

From 199 μ l (1.0 mmol) of Cy₂NH. Product crystallized after dissolving in boiling acetone and was filtered off, washed twice with Et₂O and dried on air. White polycrystalline powder, **5**·1/6H₂O (206 mg, 78 %). A single crystal was obtained by a slow cooling of hot acetone solution of **5**.

¹**H** NMR (D₂O + *t*BuOH, pD = 3.4 + 0.4): 1.10–1.27 (**4**, m, 2H), 1.28–1.43 (**3**, m, 4H), 1.43–1.62 (**2**, m, 4H), 1.63–1.72 (**4**, m, 2H), 1.85–1.96 (**3**, m, 4H), 2.00–2.10 (**2**, m, 4H), 3.29 (P–C<u>H₂</u>–N, dd, ²*J*_{HP} 11.0, ³*J*_{HH} 1.5, 2H), 3.43–3.55 (**1**, m, 2H), 7.20 (<u>H</u>–P, dt, ¹*J*_{HP} 552.5, ²*J*_{HH} 1.5, 1H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 3.4 + 0.4): 25.0 (4), 25.1 + 25.3 (3), 27.4 +29.1 (2), 48.4 (P–<u>C</u>H₂–N, d, ¹ J_{CP} 83.2), 64.5 (1, d, ³ J_{CP} 2.6)

³¹**P NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 3.4 + 0.4): 13.3 (dt, ¹*J*_{PH} 552.3, ²*J*_{PH} 11.0)

 $MS(+): 260 (260, [M+H]^+), 519 (519, [2M+H]^+)$

MS(–): 258 (258, [M–H][–]), 517 (517, [2M–H][–])

HRMS(+) (found (calc)): 260.1741 (260.1779,C₁₃H₂₇NO₂P), 519.3419 (519.3481, C₂₆H₅₃N₂O₄P₂)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.90 {5}, 0.83 {10}, 0.76 {20}, 0.75 {35}

EA (found (calc M · 1/6H₂O)): C 59.63 (59.52), H 9.81 (10.12), N 5.21 (5.34), P 11.91 (11.81)

Procedure A.

From 120 mg (1.0 mmol) of Bn(Me)NH. Product was isolated as off-white powder after evaporation. Slightly

hygroscopic powder, 6·1/6H₂O (193 mg, 95 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 5.9 + 0.4): 2.93 (C<u>H</u>₃–N, s, 3H), 3.38 (N–C<u>H</u>₂–P, d, ²*J*_{HP} 10.5, 2H), 4.46 (N–C<u>H</u>₂–Ph, s, 2H), 7.17 (H–P, dt, ¹*J*_{HP} 549.2, ³*J*_{HH} 1.7, 1H), 7.50–7.60 (Ph, m, 5H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 5.9 + 0.4): 42.5 (<u>C</u>H₃–N, d, ³*J*_{CP} 4.3), 55.3 (N–<u>C</u>H₂–P, d, ¹*J*_{CP} 83.9), 62.5 (N– <u>C</u>H₂–Ph, d, ³*J*_{CP} 4.6), 129.5 (*i*-Ph), 130.0 (*m*-Ph), 131.0 (*p*-Ph), 131.9 (*o*-Ph) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 5.9 + 0.4): 10.0 (dt, ¹*J*_{PH} 549.0, ²*J*_{PH} 10.6) MS(+): 222 (222, [M+Na]⁺), 421 (421, [2M+Na]⁺), 620 (620, [3M+Na]⁺) MS(–): 198 (198, [M–H]⁻), 397 (397, [2M–H]⁻) HRMS(+) (found (*calc*)): 222.0655 (*222.0654*, C₉H₁₄NO₂PNa) TLC (conc. aq. NH₃ : EtOH = 1:{*x*}): 0.74 {5}, 0.71 {10}, 0.68 {20}, 0.64 {35} EA (found (*calc* M • 1/6H₂O)): C 53.39 (*53.46*), H 6.90 (*7.15*), N 6.92 (*6.93*), P 15.24 (*15.32*)

1-(piperidinyl)methyl-H-phosphinic acid 7.

<u>Procedure A</u>. From 99 μl (1.0 mmol) of piperidine. Product was isolated as viscous oil (158 mg, 97 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 2.3 + 0.4): 1.44–1.56 (**3**, m, 1H), 1.70–1.80 (**3**, m, 1H), 1.74–1.86 (**2**, m, 2H), 1.90–2.01 (**2**, m, 2H), 3.05–3.16 (**1**, m, 2H), 3.14 (P–C<u>H</u>₂–N, d, ²*J*_{HP} 10.7, ³*J*_{HH} 1.7, 2H), 3.62–3.72 (**1**, m, 2H), 7.25 (<u>H</u>–P, dt, ¹*J*_{HP} 547.4, ²*J*_{HH} 1.5, 1H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 2.3 + 0.4): 21.4 (**3**), 23.4 (**2**), 56.3 (**1**), 56.7 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 90.2) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 2.3 + 0.4): 9.7 (dt, ¹*J*_{PH} 547.7, ²*J*_{PH} 10.7) MS(+): 164 (164, [M+H]⁺), 327 (327, [2M+H]⁺), 349 (349, [2M+Na]⁺) MS(-): 162 (162, [M–H]⁻), 325 (325, [2M–H]⁻) HRMS(+) (found (*calc*)): 164.0816 (*164.0840*, C₆H₁₅NO₂P), 327.1571 (*327.1603*, C₁₂H₂₉N₂O₄P₂) TLC (conc. aq. NH₃: EtOH = 1:{x}): 0.76 {5}, 0.62 {10}, 0.48 {20}, 0.47 {35} (1-Morpholino)methyl-H-phosphinic acid 8.

Procedure A.

From 87 μ l (1.0 mmol) of morpholine. Product partially crystallized upon standing at room temperature. Viscous oil with a few crystals (152 mg, 92 %).

A single crystal was prepared on standing the oil of **8** for several weeks.

¹**H** NMR (D₂O + *t*BuOH, pD = 1.8 + 0.4): 3.33 (P–C<u>H</u>₂–N, dd, ²*J*_{HP} 10.6, ³*J*_{HH} 1.8, 2H), 3.28–3.47 (N–C<u>H</u>₂–CH₂, m, 2H), 3.59–3.78 (N–C<u>H</u>₂–CH₂, m, 2H), 3.80–4.00 (O–C<u>H</u>₂–CH₂, m, 2H), 4.00–4.22 (O–C<u>H</u>₂–CH₂, m, 2H), 7.27 (<u>H</u>–P, dt, ¹*J*_{HP} 549.7, ³*J*_{HH} 1.7, 1H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 1.8 + 0.4): 54.5 (N–<u>C</u>H₂–CH₂, d, ³*J*_{CP} 4.9), 56.8 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 83.1), 64.4 (O–<u>C</u>H₂–CH₂, d, ⁴*J*_{CP} 0.4)

³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.8 + 0.4): 8.9 (dt, ¹*J*_{PH} 549.9, ²*J*_{PH} 10.6)

MS(+): 166 (166, $[M+H]^+$), 331 (331, $[2M+H]^+$)

MS(-): 164 (164, [M–H]⁻), 329 (329, [2M–H]⁻)

HRMS(+) (found (calc)): 166.0609 (166.0633, C5H13NO3P), 331.1155 (331.1188, C10H25N2O6P2)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.70 {5}, 0.60 {10}, 0.45 {20}, 0.44 {35}

(N-Benzyl)-N-(2,2,2-trifluoromethyl)-aminomethylphosphonic acid 9.

In 4-ml vial, (*N*-benzyl)-2,2,2-trifluoroethylamine (47 mg, 0.25 mmol, 1 equiv.), paraformaldehyde (15 mg, 2.0 mmol, 2 equiv.), and H_3PO_2 (as 50% aq. solution, 36 mg, 1.1 mmol, 1.1 equiv.) were mixed with glacial AcOH (2 ml). The suspension heated up to 40 °C for 1 day and conversion was determined by ³¹P NMR. Then, solvents were removed by rotary evaporator and oily residue was purified by strong cation exchanger (Dowex 50, 3×10-cm bed) and the column was washed with water. Crude product was eluted off with 3% aq. HCl and the fraction was evaporated *in vacuo* to get viscous oil (4 mg, 5 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 1.4 + 0.4): 3.43 (P–C<u>H</u>₂–N, d, ²*J*_{HP} 12.2, 2H), 4.17 (CF₃–C<u>H</u>₂–N, q, ³*J*_{HF} 8.9, 2H), 4.64 (Ph–C<u>H</u>₂–N, s, 2H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 1.4 + 0.4): 50.6 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 137.3), 52.8 (CF₃–<u>C</u>H₂–N, dd, ²*J*_{CF} 33.8, ³*J*_{CP} 4.0), 60.8 (Ph–<u>C</u>H₂–N), 123.1 (<u>C</u>F₃–CH₂–N, q, ¹*J*_{CF} 278.7), 129.5 (*i*-Ph), 129.6 (*m*-Ph), 130.6 (*p*-Ph), 131.7 (*o*-Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.4 + 0.4): 9.3 (t, ²*J*_{PH} 12.2) ¹⁹F NMR (D₂O + *t*BuOH / 0.1 M TFA in D₂O,⁶ pD = 1.4 + 0.4): -65.20 (t, ³*J*_{FH} 8.9) MS(-): 282 (282, [M–H]⁻), 565 (565, [355–H]⁻) HRMS(+) (found (*calc*)): 284.0664 (*284.0658*, C₆H₁₆N₂O₂P)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.76 {1}, 0.56 {5}, 0.33 {10}, 0.23 {20}, 0.03 {35}

⁶C. P. Rosenau, B. J. Jelier, A. D. Gossert, and A. Togni, *Angew. Chem. Int. Ed.* **2018**, *57*, 9528–9533. $\delta_{\rm F}$ (0.1 M TFA in D₂O) = -75.51 ppm.

(N-Methyl)-(N-carboxymethyl)-aminomethyl-H-phosphinic acid 10.

Procedure A.

From 89 mg (1.0 mmol) of sarcosine (*i.e. N*-Me-glycine). A residue obtained after solvent evaporation was triturated in boiling MeOH and the suspension was left to cool in fridge. Product was filtered off, washed twice with Et₂O and dried on air. White powder (115 mg, 69 %).

A single crystal was obtained by a slow cooling of boiling MeOH solution of 10.

¹**H** NMR (D₂O + *t*BuOH, pD = 1.3 + 0.4): 3.13 (C<u>H</u>₃–N, s, 3H), 3.39 (P–C<u>H</u>₂–N, dd, ²*J*_{HP} 10.6, ³*J*_{HH} 1.7, 2H), 4.20 (HOOC–C<u>H</u>₂–N, s, 2H), 7.27 (<u>H</u>–P, dt, ¹*J*_{HP} 551.5, ³*J*_{HH} 1.7, 1H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 1.3 + 0.4): 44.4 (<u>C</u>H₃–N, d, ³*J*_{CP} 3.7), 56.3 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 86.8), 58.6 (HOOC–<u>C</u>H₂–N, d, ³*J*_{CP} 4.9), 168.9 (HOO<u>C</u>–CH₂)

³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.3 + 0.4): 9.6 (dt, ¹*J*_{PH} 551.5, ²*J*_{PH} 10.6)

MS(+): 168 (168, $[M+H]^+$), 335 (335, $[2M+H]^+$)

MS(-): 166 (166, [M–H]⁻), 333 (333, [2M+H]⁺)

HRMS(+) (found (calc)): 168.0399 (168.0426, C₄H₁₁NO₄P), 335.0734 (335.0773, C₈H₂₁N₂O₈P₂)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.39 {5}, 0.18 {10}, 0.14 {20}, 0.09 {35}

EA(found (calc M)): C 28.47 (28.75), H 5.77 (6.03), N 8.15 (8.38), P 18.05 (18.54)

(N-Benzyl)-(N-carboxymethyl)-aminomethyl-H-phosphinic acid 11.

Procedure A.

From 165 mg (1.0 mmol) of *N*-benzyl-glycine. Crude product was dissolved in EtOH and precipitated with addition of acetone. The product was filtered off, washed twice with Et_2O and dried on air. White powder (138 mg, 57 %). A single crystal was prepared by a slow diffusion of acetone vapours into aqueous solution of **11**.

¹**H** NMR (D₂O + *t*BuOH, pD = 1.5 + 0.4): 3.38 (P–C<u>H</u>₂–N, dd, ²J_{HP} 10.5, ³J_{HH} 1.5, 2H), 4.17 (HOOC–C<u>H</u>₂–N, s, 2H), 4.62 (N–C<u>H</u>₂–Ph, s, 2H), 7.18 (<u>H</u>–P, dt, ¹J_{HP} 553.7, ³J_{HH} 1.7, 1H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 1.5 + 0.4): 53.5 (P–<u>C</u>H₂–N, d, ¹J_{CP} 83.0), 55.5 (HOOC–<u>C</u>H₂–N, d, ³J_{CP} 4.0), 61.3 (Ph–<u>C</u>H₂–N, d, ³J_{CP} 3.8), 128.9 (*i*-Ph), 130.0 (*m*-Ph), 131.2 (*p*-Ph), 132.2 (*o*-Ph), 169.2 (HOO<u>C</u>–CH₂) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.5 + 0.4): 9.9 (dt, ¹J_{PH} 553.9, ²J_{PH} 10.5) MS(+): 266 (266, [M+Na]⁺) MS(-): 242 (242, [M–H]⁻), 485 (485, [2M–H]⁻) HRMS(+) (found (*calc*)): 244.0708 (244.0739, C₁₀H₁₅NO₄P), 487.1352 (487.1399, C₂₀H₂₉N₂O₈P₂)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.57 {5}, 0.29 {10}, 0.29 {20}, 0.21 {35}

EA(found (calc M)): C 49.33 (49.39), H 5.61 (5.61), N 5.65 (5.76), P 12.38 (12.74)

[N,N-Bis(carboxymethyl)]-aminomethyl-H-phosphinic acid 12.

In 4-ml vial, imino-diacetic acid (133 mg, 1.0 mmol, 1 equiv.), paraformaldehyde (60 mg, 2.0 mmol, 2 equiv.) and H_3PO_2 (as 50% aq. solution, 145 mg, 1.1 mmol, 1.1 equiv.) were mixed with glacial AcOH (2 ml). The suspension was heated at 40 °C for 1 day during (product precipitated during the reaction time). Solids were filtered off, washed with AcOH (~2 ml), thrice with Et₂O (~5 ml) and dried on air. White powder of **12**·0.25H₂O (192 mg, 89 %).⁷ A single crystal was obtained by slow acetone vapour diffusion into aqueous solution of **12**.

Characterization data were the same as published.⁸

 ⁷EA (found (*calc* 12·0.25H₂O)): C 27.89 (27.85), H 4.42 (4.91), N 6.54 (6.50), P 14.54 (14.37)
⁸M. Paurová, T. David, I. Císařová, P. Lubal, P. Hermann and J. Kotek, *New J. Chem.* 2018, 42, 11908–11929.

[1-(Methyl-H-phosphinic acid]-L-proline-13.

Procedure A.

From 115 mg (1.0 mmol) of *L*-proline. Crude product was dissolved in MeOH:EtOH ~9:1 and precipitated with addition of acetone. Product was filtered off, washed twice with Et_2O and dried on air. White powder (141 mg, 73 %). To get single crystals, aqueous solution of **13** was overlayered with acetone and left to stand for several days.

¹**H** NMR (D₂O + *t*BuOH, pD = 1.1 + 0.4): 1.97–2.14 (**3**, m, 1H), 2.15–2.29 (**2** + **3**, m, 2H), 2.52–2.65 (**3**, m, 1H), 3.30–3.39 (**4**, m, 1H), 3.32–3.54 (P–C<u>H</u>₂–N, m, 2H), 3.92–4.05 (**4**, m, 1H), 4.35–4.47 (**1**, m, 1H), 7.22 (<u>H</u>–P, dt, ¹ J_{HP} 548.1, ³ J_{HH} 1.7, 1H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 1.1 + 0.4): 23.3 (3), 28.6 (2), 54.9 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 84.4), 57.8 (4, d, ³*J*_{CP} 3.7), 69.9 (1, d, ³*J*_{CP} 4.6), 172.2 (HOO<u>C</u>–CH)

³¹**P NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.1 + 0.4): 10.7 (dt, ¹*J*_{PH} 549.2, ²*J*_{PH} 10.8)

MS(+): 194 (194, [M+H]⁺), 387 (387, [2M+H]⁺)

MS(-): 192 (192, [M–H]⁻), 385 (385, [2M–H]⁻)

HRMS(+) (found (calc)): 194.0558 (194.0582, C₆H₁₃NO₄P), 387.1092 (387.1086, C₁₂H₂₅N₂O₈P₂)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.41 {5}, 0.21 {10}, 0.18 {20}, 0.12 {35}

EA(found (calc M)): C 36.82 (37.13), H 5.99 (6.26), N 7.09 (7.25), P 15.39 (16.04)

(N-methyl)-[N-(2-hydroxyethyl)]-aminomethyl-H-phosphinic acid 14a.

In 4-ml vial, (*N*-methyl)-ethanolamine (80 μ l, 75 mg, 1.0 mmol, 1 equiv.), paraformaldehyde (60 mg, 2.0 mmol, 2 equiv.) and H₃PO₂ (as 50% aq. solution, 145 mg, 1.1 mmol, 1.1 equiv.) were mixed with glacial AcOH (2 ml). The suspension was heated at 40 °C for 1 day. Then, solvents were removed by rotary evaporator and an oily residue was purified on strong cation exchanger (Dowex 50, 3×10-cm bed). Product was eluted off with water after a delay. Fractions with pure product were combined and solvents were evaporated *in vacuo* to give product as viscous oil (51 mg, 33 %).

¹**H NMR** (D₂O + *t*BuOH, pD = 3.5 + 0.4): 3.08 (C<u>H</u>₃–N, s, 3H), 3.25–3.62 (P–C<u>H</u>₂–N + HO–CH₂–C<u>H</u>₂–N, m, 4H), 3.95 (HO–C<u>H</u>2–CH2–N, t, ${}^{3}J_{HH}$ 5.2, 2H), 7.27 (<u>H</u>–P, dt, ${}^{1}J_{HP}$ 548.9, ${}^{3}J_{HP}$ 1.7, 1H) ¹³C{¹**H**} **NMR** (D₂O + *t*BuOH, pD = 3.5 + 0.4): 43.1 (<u>C</u>H₃–N, d, ${}^{3}J_{CP}$ 4.2), 55.8 (P–<u>C</u>H₂–N, d, ${}^{1}J_{CP}$ 84.1), 55.8 (HO– <u>C</u>H₂–CH₂–N), 59.8 (HO–CH₂–<u>C</u>H₂–N, d, ${}^{3}J_{CP}$ 4.4) ³¹**P NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 3.5 + 0.4): 9.7 (dt, ${}^{1}J_{PH}$ 549.2, ${}^{2}J_{PH}$ 10.4) **TLC** (conc. aq. NH₃ : EtOH = 1:{x}): 0.58 {5}, 0.44 {10}, 0.38 {20}, 0.33 {35}

Bis{(N-methyl)-[N-(2-hydroxyethyl)]-aminomethyl}phosphinic acid 14b.

In 4-ml vial, (*N*-methyl)-ethanolamine (80 μ l, 75 mg, 1.0 mmol, 1 equiv.), paraformaldehyde (30 mg, 1.0 mmol, 1 equiv.) and H₃PO₂ (as 50% aq. solution, 145 mg, 1.1 mmol, 1.1 equiv.) were mixed with glacial AcOH (2 ml). The suspension was heated at 40 °C for 1 day. Then, solvents were removed by rotary evaporator and an oily residue was purified on strong cation exchanger (Dowex 50, 3×10-cm bed). The column was washed with water. Product was eluted off with 10% aq. pyridine and the solution was concentrated *in vacuo*. An oily residue was dissolved in 1:1 aq. HCl and the solution exchanger (Dowex 50, 3×10-cm bed). The column was washed with water and the product was eluted off with 10% aq. pyridine, and the solvents were removed on rotary evaporator and an oily residue was purified on strong cation exchanger (Dowex 50, 3×10-cm bed). The column was washed with water and the product was eluted off with 10% aq. pyridine, and the solvents were evaporated *in vacuo* to give product as a viscous oil (72 mg, 30 %, yield based on starting amine).

¹**H** NMR (D₂O + *t*BuOH, pD = 5.6 + 0.4): 3.07 (C<u>H</u>₃–N, s, 6H), 3.42–3.48 (CH₂–C<u>H</u>₂–N, m, 4H), 3.49 (P–C<u>H</u>₂–N, d, ${}^{2}J_{HP}$ 9.2, 4H), 3.95 (HO–C<u>H</u>₂–CH₂–N, t, ${}^{3}J_{HH}$ 5.2, 4H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 5.6 + 0.4): 43.7 (<u>C</u>H₃–N, d, ${}^{3}J_{CP}$ 3.8), 55.6 (P–<u>C</u>H₂–N, d, ${}^{1}J_{CP}$ 95.0), 56.1 (HO– <u>C</u>H₂–CH₂), 60.2 (CH₂–<u>C</u>H₂–N, d, ${}^{3}J_{CP}$ 4.6) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 5.6 + 0.4): 16.7 (p, ${}^{2}J_{PH}$ 10.3) MS(+): 241 (241, [M+H]⁺), 481 (481, [2M+H]⁺) MS(-): 239 (239, [M–H]⁻), 479 (479, [2M–H]⁻) HRMS(+) (found (*calc*)): 241.1316 (*241.1312*, C₈H₂₂N₂O₄P) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.50 {5}, 0.32 {10}, 0.30 {20}, 0.20 {35} Bis{[N,N-bis(2-hydroxyethyl)]-aminomethyl}phosphinic acid 15b.

In 4-ml vial, diethanolamine (96 μ l, 105 mg, 1.0 mmol, 1 equiv.), paraformaldehyde (60 mg, 2.0 mmol, 2 equiv.) and H₃PO₂ (as 50% aq. solution, 145 mg, 1.1 mmol, 1.1 equiv.) were mixed with glacial AcOH (2 ml). The suspension was heated at 40 °C for 1 day. Then, solvents were removed on rotary evaporator and an oily residue was purified on strong cation exchanger (Dowex 50, 3×10-cm bed). The column was washed with water. The product was eluted off with 10% aq. pyridine and the solution was concentrated *in vacuo*. An oily residue was dissolved in 1:1 aq. HCl and stirred at 90 °C for 1 day. Solvents were removed on rotary evaporator and an oily residue was purified on strong cation exchanger (Dowex 50, 3×10-cm bed). The column was washed with water and the product was eluted off with 10% aq. pyridine and the solution was concentrated *in vacuo* to give the product as a viscous oil (135 mg, 45 %, yield based on amine).

¹**H NMR** (D₂O + *t*BuOH, pD = 3.4 + 0.4): 3.60–3.65 (CH₂–C<u>H</u>₂–N, m, 8H), 3.65 (P–C<u>H</u>₂–N, d, ²*J*_{HP} 8.9, 4H), 3.97–4.02 (HO–C<u>H</u>₂–CH₂, m, 8H) ¹³C{¹**H**} **NMR** (D₂O + *t*BuOH, pD = 3.4 + 0.4): 53.2 (P–CH₂–N, d, ¹*J*_{CP} 94.3), 55.9 (HO–CH₂–CH₂), 58.0 (CH₂–CH₂–N, d, ³*J*_{CP} 3.2) ³¹**P NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 3.4 + 0.4): 16.5 (p, ²*J*_{PH} 6.7) **MS**(+): 301 (301, [M+H]⁺), 601 (601, [2M+H]⁺) **MS**(-): 299 (299, [M–H]⁻), 599 (599, [2M–H]⁻) **HRMS**(+) (found (*calc*)): 323.1292 (*323.1348*, C₁₀H₂₅N₂O₆PNa), 623.2683 (*623.2798*, C₂₀H₄₉N₄O₁₂P₂Na) **TLC** (conc. aq. NH₃ : EtOH = 1:{*x*}: 0.45 {5}, 0.32 {10}, 0.26 {20}, 0.23 {35}

Piperazine-(N-methyl)-(N'-methyl-H-phosphinic acid) 16.

Procedure **B**.

From 111 µl (100 mg, 1.0 mmol) of (N-methyl)-piperazine. Viscous oil (36 mg, 20 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 4.9 + 0.4): 2.72 (P–C<u>H</u>₂–N, dt, ²J_{HP} 10.8, ³J_{HH} 2.1, 2H), 2.90 (C<u>H</u>₃–N, s, 3H), 2.95–3.63 (N–C<u>H</u>₂–C<u>H</u>₂–N, m, 8H), 7.07 (<u>H</u>–P, dt, ¹J_{HP} 519.0, ³J_{HH} 2.1, 1H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 4.9 + 0.4): 43.4 (<u>C</u>H₃–N), 51.9 (CH₂–<u>C</u>H₂–N–CH₂, d, ³J_{CP} 8.6), 53.5 (CH₃–N– <u>C</u>H₂), 58.1 (P–<u>C</u>H₂–N, d, ¹J_{CP} 101.3) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 4.9 + 0.4): 20.2 (dt, ¹J_{PH} 518.4, ²J_{PH} 10.8) MS(+): 179 (179, [M+H]⁺), 357 (357, [2M+H]⁺) MS(-): 177 (177, [M–H]⁻), 355 (355, [355–H]⁻) HRMS(+) (found (*calc*)): 179.0915 (*179.0949*, C₆H₁₆N₂O₂P), 357.1772 (*357.1821*, C₁₂H₃₁N₄O₄P₂) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.64 {5}, 0.36 {10}, 0.21 {20}, 0.18 {35} [N,N-Bis(2-phthalimido-ethyl)]-aminomethyl-H-phosphinic acid 17.

Procedure **B**.

From 115 mg (1.0 mmol) of *N*,*N*-bis(2-phtalimido-ethyl)amine. Product was crystallized from boiling water, filtered off, washed twice with Et₂O and dried on air. White powder (278 mg, 63 %).

A single crystal was prepared by slow cooling of a hot aqueous solution of 17.

¹**H** NMR (DMSO-*d*₆): 2.86 (H–P–C<u>H</u>₂–N, dd, ²*J*_{HP} 9.2, ³*J*_{HH} 2.2, 2H), 2.91 (PhtN–CH₂–C<u>H</u>₂–N, t, ³*J*_{HH} 6.2, 4H), 3.62 (PhtN–C<u>H</u>₂–CH₂–N, t, ³*J*_{HH} 6.2, 4H), 6.75 (<u>H</u>–P, dt, ¹*J*_{HP} 529.6, ³*J*_{HH} 2.2, 1H), 7.68–7.81 (Phth, m, 8H) ¹³C{¹**H**} NMR (DMSO-*d*₆): 35.1 (PhtN–<u>C</u>H₂–CH₂–N), 52.4 (H–P–<u>C</u>H₂–N, d, ¹*J*_{CP} 105.6), 52.7 (PhtN–CH₂–<u>C</u>H₂–N, d, ³*J*_{CP} 6.6), 122.9 (2), 131.7 (1), 134.2 (3), 167.8 (N–<u>C</u>=O) ³¹**P** NMR (DMSO-*d*₆ / 85% aq H₃PO₄): 26.8 (dt, ¹*J*_{PH} 529.8, ²*J*_{PH} 9.6) MS(+): 464 (464, [M+Na]⁺) MS(-): 440 (440, [M–H]⁻) HRMS(+) (found (*calc*)): 442.1173 (442.1162, C₂₁H₂₁N₃O₆P) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.84 {1.5}, 0.39 {5}, 0.13 {10}, 0.09 {20} EA(found (*calc* M · 3/2H₂O)): C 53.80 (53.85), H 4.85 (4.95), N 8.77 (8.97), P 6.38 (6.61)

General procedure for reaction of various aldehydes (Table 2) in the paper text

l-[(N,N-Dibenzyl)-amino]-ethyl-H-phosphinic acid 18.

Either from 112 μ l (2.0 mmol) of acetaldehyde, or 92 μ l (0.7 mmol) of paraldehyde. Viscous oil (202 mg, ~70 %). A single crystal was prepared by mixing of 1-adamantylamine (~1–2 equiv.) with a hot aqueous solution of **18**. After slow cooling, the product crystallized as 1-adamantylammonium salt. Anion of **18** is shown below.

¹**H** NMR (D₂O + *t*BuOH, pD = 4.1 + 0.4): 1.59 (C<u>H</u>₃-CH, dd, ³*J*_{HP} 15.9, ³*J*_{HH} 7.3, 3H), 3.36 (P-C<u>H</u>-N, dqd, ²*J*_{HP} 12.9, ³*J*_{HH} 7.3, ³*J*_{HH} 1.5, 1H), 4.24–4.83 (Ph-C<u>H</u>₂-N, m, 4H), 7.06 (<u>H</u>-P, dd, ¹*J*_{HP} 544.3, ³*J*_{HH} 1.5, 1H), 7.41–7.56 (Ph, m, 10H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 4.1 + 0.4): 8.2 (<u>C</u>H₃-CH), 56.7 (P-<u>C</u>H-N, d, ¹ J_{CP} 86.8), 129.8 (*i*-Ph), 130.1 (*m*-Ph), 130.9 (*p*-Ph), 131.8 (*o*-Ph)

³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 4.1 + 0.4): 18.7 (dqd, ${}^{1}J_{PH}$ 544.3, ${}^{3}J_{PH}$ 15.6, ${}^{2}J_{PH}$ 13.2)

MS(+): 312 (312, [M+Na]⁺), 579 (579, [2M+H]⁺), 601 (601, [2M+Na]⁺)

MS(–): 288 (288, [M–H][–]), 577 (577, [2M–H][–])

HRMS(+) (found (*calc*)): 290.1268 (290.1310, C₁₆H₂₀NO₂P)

TLC: 0.63 (*i*PrOH:conc. aq. NH₃:H₂O = 10:1:2), 0.62 (MeOH:*i*PrOH = 1:1), 0.54 (EtOH)

{1-[(N,N-Dibenzyl)-amino]-but-1-yl}-H-phosphinic acid 19.

From 180 µl (2.0 mmol) of *n*-butyraldehyde. Viscous oil (133 mg, 42 %).

¹**H** NMR (CD₃OD): 1.01 (**4**, t, ${}^{3}J_{\text{HH}}$ 7.4, 3H), 1.29–1.46 (**3**, m, 1H), 1.62–1.75 (**3**, m, 1H), 1.92–2.14 (**2**, m, 2H), 2.93–3.02 (**1**, m, 1H), 4.30–4.70 (Ph–C<u>H₂</u>–N, m, 4H), 7.15 (<u>H</u>–P, dd, ${}^{1}J_{\text{HP}}$ 537.0, ${}^{3}J_{\text{HH}}$ 1.2, 1H), 7.37–7.65 (Ph, m, 10H) ¹³C{¹H} NMR (CD₃OD): 14.4 (**4**), 21.1 (**3**, d, ${}^{3}J_{\text{CP}}$ 2.4), 26.5 (**2**, d, ${}^{2}J_{\text{CP}}$ 1.5), 57.3 (Ph–<u>C</u>H₂–N), 62.0 (P–<u>C</u>H₂–N, d, ${}^{1}J_{\text{CP}}$ 83.3), 130.7 (Ph), 131.2 (*p*-Ph), 131.9 (Ph), 132.0 (*i*-Ph) ³¹P NMR (CD₃OD / 85% aq H₃PO₄): 14.3–15.1 and 18.8–19.5 (dm, ${}^{1}J_{\text{PH}}$ 536.9) MS(+): 318 (318, [M+H]⁺), 340 (340, [M+Na]⁺), 356 (356, [M+K]⁺), 657 (657, [2M+Na]⁺) MS(–): 316 (316, [M–H]⁻), 633 (633, [2M–H]⁻) HRMS(+) (found (*calc*)): 318.1608 (*318.1623*, C₁₈H₂₅NO₂P), 635.3137 (*635.3168*, C₃₆H₄₉N₂O₄P₂) TLC: 0.65 (*i*PrOH:conc. aq. NH₃:H₂O = 10:1:2), 0.65 (MeOH:*i*PrOH = 1:1), 0.54 (EtOH)

From 222 μ l (240 mg, 2.0 mmol) of freshly distilled 1-phenyl-acetaldehyde. A viscous oil of a crude product was dissolved in CH₂Cl₂ (10 ml) and the solution was washed twice with water (5 ml). The organic phase was dried with anhydrous MgSO₄ and concentrated *in vacuo*. An oily residue was dissolved in MeOH (5 ml) and the product crystallized in the fridge. Product was filtered off, washed with Et₂O (2×1 ml) and dried on air. Crystalline powder, **20**·MeOH·3/2H₂O (68 mg, 16 %).

A single crystal was prepared by slow cooling of hot MeOH solution of 20 in fridge.

¹**H** NMR ((CD₃)₂SO): 2.45–2.70 (CH–C<u>H₂</u>–Ph + P–<u>C</u>H–N, m, 3H), 2.72 (<u>Me</u>OH, s, 3H), 4.17–4.55 (Ph–C<u>H₂–N, m, 4H), 6.60 (<u>H</u>–P, d, ¹ J_{HP} 522.8, 1H), 6.69–6.90 (Ph, m, 10H)</u>

¹³C{¹H} NMR ((CD₃)₂SO): 29.9 (CH–C<u>H</u>₂–Ph, d, ² J_{CP} 8.1), 48.7 (<u>Me</u>OH), 54.1 (N–<u>C</u>H₂–Ph, d, ³ J_{CP} 5.7), 59.2 (P–<u>C</u>H–N, d, ¹ J_{CP} 101.8), 126.2 (**4** or **4'**), 127.0 (**3**), 128.2 (**3'**), 128.3 (**4** or **4'**), 128.5 (**2'**), 129.4 (**2**), 139.2 (**1'**), 139.5 (**1**, d, ³ J_{CP} 12.6)

³¹**P NMR** ((CD₃)₂SO / 85% aq H₃PO₄): 29.1–29.4 and 32.3–32.7 (dm, ¹*J*_{PH} 522.6)

MS(+): 388 (388, [M+Na]⁺), 404 (404, [M+K]⁺)

MS(–): 364 (364, [M–H][–])

HRMS(+) (found (*calc*)): 366.1628 (366.1623, $C_{22}H_{25}NO_2P$), 763.2892 (763.3430, $C_{44}H_{49}N_2O_4P_2$ + CH₃OH)

TLC: 0.74 (*i*PrOH:conc. aq. NH₃:H₂O = 10:1:2), 0.62 (MeOH:*i*PrOH = 1:1), 0.54 (EtOH)

EA(found (calc M · MeOH · 3/2H₂O)): C 65.13 (65.08), H 6.86 (7.36), N 3.26 (3.30), P 7.15 (7.30)

In 4-ml vial, (*N*,*N*-dibenzyl)-amine (192 µl, 1.0 mmol, 1 equiv.), trifluoroacetaldehyde monohydrate (161 µl, 2.0 mmol, 2 equiv.) and H₃PO₂ (50% aq., 145 mg, 1.1 mmol, 1.1 equiv.) were mixed with glacial AcOH (2 ml). Solution was heated at 80 °C for 3 days and conversion was determined by ³¹P NMR. Then, solvents were removed *in vacuo* and an oily residue was purified on strong cation exchanger chromatography (Dowex 50, 3×10-cm bed) and it was eluted off with water. After concentration *in vacuo*, an oily residue was further purified by silica column chromatography (50 g, $V_{\rm M} \sim 35$ ml). Column was washed with *i*PrOH (~200 ml) to elute off **21a** and **21b** was then eluted with *i*PrOH:conc. aq. NH₃:water ~20:1:2 (~7.5-ml fractions). Fractions containing pure product were combined and the solution was evaporated to dryness. To regenerate free acid form of the compound, the oil was applied on strong cation exchanger (Dowex 50, 3×5-cm bed) and product was eluted off with water. Fractions containing pure product were evaporated to dryness. Viscous oil (43 mg, 24 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 0.5 + 0.4): 4.18 (P–C<u>H</u>–CF₃, dq, ²*J*_{HP} 10.8, ³*J*_{HF} 9.0, 1H), 7.01 (<u>H</u>–P, dqd, ¹*J*_{HP} 558.3, ⁴*J*_{HF} 2.4, ²*J*_{HH} 1.3, 1H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 0.5 + 0.4): 69.3 (P–<u>C</u>H–CF₃, dq, ¹*J*_{CP} 102.2, ²*J*_{CF} 30.5), 124.9 (P–CH–<u>C</u>F₃, qd, ¹*J*_{CF} 281.0, ³*J*_{CP} 5.0) ³¹**P** NMR (D₂O / 85% aq H₃PO₄, pD = 0.5 + 0.4): 19.0 (dq, ¹*J*_{PH} 558.6, ³*J*_{PF} 6.6) ¹⁹**F** NMR (D₂O / 0.1M TFA in D₂O, pD = 0.5 + 0.4): -71.67 (ddd, ³*J*_{FH} 9.5, ³*J*_{FP} 6.8, ⁴*J*_{FH} 2.8) MS(+): 165 (165, [M+H]⁺), 329 (329, [2M+H]⁺) MS(-): 163 (163, [M–H]⁻), 327 (327, [2M–H]⁻), 491 (491, [3M–H]⁻) HRMS(–) (found (*calc*)): 162.9780 (*162.9777*, C₂H₃F₃O₃P) TLC: 0.26 (*i*PrOH:conc. aq. NH₃:H₂O = 20:1:2), 0.50 (*i*PrOH:conc. aq. NH₃:H₂O = 10:1:2), 0.23 (*i*PrOH) Bis(1-hydroxy-2,2,2-trifluoro-eth-1-yl)phosphinic acid 21b

In 4-ml vial, trifluoroacetaldehyde monohydrate (322 µl, 4.0 mmol, 4 equiv.), and H_3PO_2 (50% aq., 132 mg, 1.0 mmol, 1.0 equiv.) were mixed with glacial AcOH (2 ml). Solution was heated at 80 °C for 3 days and conversion was determined by ³¹P NMR. Then, solvents were removed on rotary evaporator. An oily residue was purified on silica column chromatography (50 g, $V_M \sim 35$ ml) with elution of *i*PrOH (7.5-ml fractions). Fractions containing pure product were combined, the solution was evaporated to dryness and once co-evaporated with toluene (~5 ml). Viscous oil (236 mg, 90 %).

Mixture of diastereoisomers:

¹**H** NMR (D₂O + *t*BuOH, pD = 0.3 + 0.4): 4.41 (P–C<u>H</u>–CF₃, p, ${}^{3}J_{HF}$ 9.0, 1H), 4.49 (P–C<u>H</u>–CF₃, p, ${}^{3}J_{HF} \sim {}^{2}J_{HP}$ 9.1, 1H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 0.3 + 0.4): 2× 67.2 (P–CH–CF₃, dq, ${}^{1}J_{CP}$ 101.0, ${}^{3}J_{CF}$ 30.6), 2× 125.0 (P–CH–CF₃, qd, ${}^{1}J_{CF}$ 281.2, ${}^{2}J_{CP}$ 4.2) ³¹**P** NMR (D₂O / 85% aq H₃PO₄, pD = 0.3 + 0.4): 22.3 (thept, ${}^{2}J_{PH}$ 8.9, ${}^{3}J_{PF}$ 4.7), 25.0 (thept, ${}^{2}J_{PH}$ 9.6, ${}^{3}J_{PF}$ 4.9) ¹⁹**F** NMR (D₂O / 0.1M TFA in D₂O, pD = 0.3 + 0.4): -70.51 (dd, ${}^{3}J_{FH}$ 9.2, ${}^{4}J_{FP}$ 4.8, 1F), -71.26 (dd, ${}^{3}J_{FH}$ 9.1, ${}^{4}J_{FP}$ 4.6, 1F) MS(+): 263 (263, [M+H]⁺), 525 (525, [2M+H]⁺), 547 (547, [2M+Na]⁺) MS(–): 261 (261, [M–H]⁻), 523 (523, [2M–H]⁻)

HRMS(-) (found (*calc*)): 260.9757 (260.9751, $C_4H_4F_6O_4P$)

TLC: 0.32 (*i*PrOH:conc. aq. NH₃:H₂O = 20:1:2), 0.50 (*i*PrOH:conc. aq. NH₃:H₂O = 10:1:2), 0.55 (*i*PrOH)

General procedure for reaction of primary amines (Table 3) in the paper text

(N-Benzyl)-amino-N,N-bis(methyl-H-phosphinic acid) 22.

From 54 μ l (54 mg, 1.0 mmol) of *N*-benzyl-amine. Viscous oil (45 mg, 34 %) which solidified upon standing. Characterization data were the same as published.⁹

A single crystal was prepared by slow evaporation of aqueous solution of 22.

¹**H** NMR (D₂O + *t*BuOH, pD = 0.8 + 0.4): 3.46 (P–C<u>H</u>₂–N, d, ²J_{HP} 10.6, 4H), 4.69 (N–C<u>H</u>₂–Ph, s, 2H), 7.17 (<u>H</u>–P, dt, ¹J_{HP} 555.6, ³J_{HH} 1.7, 2H), 7.52–7.64 (Ph, m, 5H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 0.8 + 0.4): 54.1 (P–<u>C</u>H₂–N, dd, ¹J_{CP} 83.6, ³J_{CP} 4.0), 61.9 (N–C<u>H</u>₂–Ph, t, ³J_{CP} 3.5), 129.2 (*i*-Ph), 130.1 (*m*-Ph), 131.2 (*p*-Ph), 132.3 (*o*-Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.8 + 0.4): 10.9 (dt, ¹J_{HP} 555.6, ²J_{PH} 10.6) MS(+): 527 (527, [2M+H]⁺), 549 (549, [2M+Na]⁺) MS(-): 262 (262, [M–H]⁻), 547 (547, [2M+Na–2H]⁻) HRMS(-) (found (*calc*)): 262.0404 (*262.0398*, C₉H₁₄NO₄P₂) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.83 {5}, 0.69 {10}, 0.64 {20}, 0.57 {35}.

⁹ B. Dhawam, D. Redmore, J. Chem. Res. (S) 1988, 34–35.

[N-(2-Phenyl-ethyl)]-amino-N,N-bis(methyl-H-phosphinic acid) 23.

From 63 µl (31 mg, 1.0 mmol) of (2-phenyl-ethyl)amine. Viscous oil (44 mg, 32 %).

¹**H NMR** (D₂O + *t*BuOH, pD = 0.7 + 0.4): 3.12–3.19 (N–CH₂–CH₂–Ph, m, 2H), 3.55 (P–CH₂–N, d, ²*J*_{HP} 10.5, 4H), 3.72–3.79 (N–CH₂–CH₂–Ph, m, 2H), 7.29 (<u>H</u>–P, dt, ¹*J*_{HP} 553.4, ³*J*_{HH} 1.6, 2H), 7.33–7.46 (Ph, m, 5H) ¹³C{¹**H**} **NMR** (D₂O + *t*BuOH, pD = 0.7 + 0.4): 30.4 (N–CH₂–<u>C</u>H₂–Ph), 54.7 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 84.2), 58.9 (N–<u>C</u>H₂– CH₂–Ph, t, ³*J*_{CP} 3.6), 128.2 (*p*-Ph), 129.6 (*o*-Ph), 129.8 (*m*-Ph), 136.4 (*i*-Ph) ³¹**P NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.7 + 0.4): 10.5 (dt, ¹*J*_{HP} 553.3, ²*J*_{PH} 10.5) **MS**(+): 278 (278, [M+H]⁺), 555 (555, [2M+H]⁺) **MS**(–): 276 (276, [M–H]⁻), 553 (553, [2M–H]⁻) **HRMS**(–) (found (*calc*)): 276.0560 (*276.0555*, C₁₀H₁₆NO₄P₂) **TLC** (conc. aq. NH₃ : EtOH = 1:{*x*}): 0.78 {5}, 0.68 {10}, 0.64 {20}, 0.53 {35}

From 57 µl (50 mg, 1.0 mmol) of cyclohexylamine. Viscous oil (43 mg, 33 %). ¹**H** NMR (D₂O + *t*BuOH, pD = 0.8 + 0.4): 1.14–1.24 (**4**, m, 1H), 1.30–1.44 (**3**, m, 2H), 1.45–1.59 (**2**, m, 2H), 1.64– 1.74 (**4**, m, 1H), 1.88–1.98 (**3**, m, 2H), 2.03–2.14 (**2**, m, 2H), 3.45 (P–C<u>H</u>₂–N, d, ²*J*_{HP} 10.9, 4H), 3.61–3.71 (**1**, m, 1H), 7.28 (<u>H</u>–P, d, ¹*J*_{HP} 555.8, 2H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 0.8 + 0.4): 2× 25.1 (**4** + **3**), 26.9 (**2**), 51.9 (P–<u>C</u>H₂–N, dd, ¹*J*_{CP} 83.9, ³*J*_{CP} 3.9), 68.0 (**1**, t, ³*J*_{CP} 3.7) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.8 + 0.4): 11.8 (dt, ¹*J*_{HP} 555.8, ²*J*_{PH} 10.8) MS(+): 256 (256, [M+H]⁺), 511 (511, [2M+H]⁺) MS(-): 254 (254, [M–H]⁻), 509 (509, [2M–H]⁻) HRMS(–) (found (*calc*)): 254.0717 (*254.0711*, C₈H₁₈NO₄P₂) TLC (conc. aq. NH₃ : EtOH = 1:{*x*}): 0.57 {5}, 0.52 {10}, 0.48 {20}, 0.43 {35}

(N-t-Butyl)-amino-N,N-bis(methyl-H-phosphinic acid) 25.

From 52 μ l (36 mg, 1.0 mmol) of *t*-butylamine. Viscous oil which solidified upon standing, **25**·H₂O (25 mg, 20 %). A single crystal was obtained on standing the oil of **25** for several weeks.

¹**H** NMR (D₂O + *t*BuOH, pD = 0.6 + 0.4): 1.48 (C<u>H</u>₃-C-P, s, 9H), 3.48 (P-C<u>H</u>₂-N, dd, ²*J*_{HP} 11.2, ³*J*_{HH} 1.5, 4H), 7.30 (<u>H</u>-P, dt, ¹*J*_{HP} 559.1, ³*J*_{HH} 1.5, 2H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 0.6 + 0.4): 24.7 (<u>C</u>H₃-C-P), 52.3 (P-<u>C</u>H₂-N, dd, ¹*J*_{CP} 82.3, ³*J*_{CP} 2.6), 69.0 (CH₃-<u>C</u>-P, t, ³*J*_{CP} 3.3)

³¹**P NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.6 + 0.4): 13.0 (dt, ${}^{1}J_{HP}$ 559.2, ${}^{2}J_{PH}$ 11.2)

MS(+): 230 (230, [M+H]⁺), 252 (252, [M+Na]⁺), 459 (459, [2M+H]⁺), 481 (481, [2M+Na]⁺)

MS(-): 228 (228, [M–H]⁻), 457 (457, [2M–H]⁻)

HRMS(-) (found (*calc*)): 228.0566 (*228.0560*, C₆H₁₆NO₄P₂)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.59 {5}, 0.54 {10}, 0.39 {20}, 0.28 {35} EA(found (*calc* M · H₂O)): C 29.10 (29.16), H 6.90 (7.75), N 5.39 (5.67), P 25.88 (25.06)

From 75 mg (1.0 mmol) of 1-adamantylamine. Viscous oil (47 mg, 31 %).

¹**H NMR** (D₂O + *t*BuOH, pD = 0.8 + 0.4): 1.60–1.82 (**4**, m, ${}^{3}J_{HH}$ 12.7, 6H), 1.93–2.11 (**2**, m, 6H), 2.24–2.37 (**3**, m, 3H), 3.52 (P–C<u>H</u>₂–N, d, ${}^{2}J_{HP}$ 10.4, 4H), 7.31 (<u>H</u>–P, dt, ${}^{1}J_{HP}$ 560.0, ${}^{3}J_{HH}$ 1.5, 2H) ¹³C{¹H} **NMR** (D₂O + *t*BuOH, pD = 0.8 + 0.4): 30.3 (**4**), 35.2 (**3**), 37.0 (**2**), 50.1 (P–<u>C</u>H₂–N, dd, ${}^{1}J_{CP}$ 83.6, ${}^{3}J_{CP}$ 3.6), 69.9 (**1**, t, ${}^{3}J_{CP}$ 2.9) ³¹P **NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.8 + 0.4): 13.4 (dt, ${}^{1}J_{HP}$ 560.5, ${}^{2}J_{PH}$ 11.0) **MS**(+): 308 (308, [M+H]⁺), 615 (615, [2M+H]⁺) **MS**(-): 306 (306, [M–H]⁻), 613 (613, [2M–H]⁻) **HRMS**(+) (**found** (*calc*)): 306.1028 (*306.1030*, C₁₂H₂₂NO₄P₂) **TLC** (**conc. aq. NH₃ : EtOH = 1:{x}): 0.73 {**5}, 0.64 {10}, 0.54 {20}, 0.43 {35}

In 25-ml flask, aminomethylphosphonic acid (111 mg, 1.0 mmol, 1 equiv), paraformaldehyde (33 mg, 1.1 mmol, 1.1 equiv.), 50% aq. H₃PO₂ (396 mg, 3.0 mmol, 3 equiv.) and anhydrous sodium acetate (164 mg, 2.0 mmol, 2 equiv.) were mixed with glacial AcOH (10 ml). Solution was stirred at room temperature for 2 days and conversion was determined by ³¹P NMR. Then, the solids were filtered off and the filtrate was concentrated *in vacuo*. An oily residue was triturated in MeOH (10 ml) using ultrasound. The solids were filtered off and washed with Et₂O (2× 2 ml). A crude powdered product was dissolved in water (5 ml) and was purified on strong cation exchanger (Dowex 50, 3×10- cm bed). Product was eluted off with water. After concentrating *in vacuo*, an oily residue was re-purified on strong cation exchanger (Dowex 50, 3×10- cm bed) and 1–3-ml fractions were collected. Fractions containing product were combined, solutions was concentrated *in vacuo* and the residue repeatedly purified as stated above (~2–4 cycles). Finally, fractions with pure product were combined and concentrated *in vacuo* to give product as a viscous oil (192 mg, 72 %).

¹**H** NMR (D₂O + *t*BuOH, pD = -0.1 + 0.4): 3.71 (H–P–C<u>H</u>₂–N, d, ²*J*_{HP} 10.5, 4H), 3.78 (HO–P–C<u>H</u>₂–N, d, ²*J*_{HP} 12.6, 2H), 7.32 (<u>H</u>–P, dt, ¹*J*_{HP} 560.9, ³*J*_{HH} 1.8, 2H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = -0.1 + 0.4): 54.0 (HO–P–<u>C</u>H₂–N, dt, ¹*J*_{CP} 138.4, ³*J*_{CP} 3.9), 56.2 (H–P–<u>C</u>H₂–N, dp, ¹*J*_{CP} 85.6, ³*J*_{CP} 3.3) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = -0.1 + 0.4): 9.0 (HO–<u>P</u>, t, ²*J*_{PH} 12.6, 1P), 12.0 (H–<u>P</u>, dt, ¹*J*_{PH} 560.9, ²*J*_{PH} 10.5, 2P) MS(+): 335 (335, [M+Na]⁺) MS(-): 311 (311, [M–H]⁻), 623 (623, [2M–H]⁻), 644 (644, [2M–2H+Na]⁻) HRMS(–) (found (*calc*)): 265.9757 (*265.9754*, C₃H₁₁NO₇P₃) TLC (conc. aq. NH₃ : MeOH = 1:{x}): 0.67 {1}, 0.43 {2}, 0.22 {5} (N-benzyl)-(N-methylphosphonic acid)-aminomethyl-H-phosphinic acid 28a.

In 25-ml flask, (*N*-benzyl)-aminomethylphosphonic acid (201 mg, 1.0 mmol, 1 equiv.), paraformaldehyde (33 mg, 1.1 mmol, 1.1 equiv.), and H_3PO_2 (as 50% aq. solution, 396 mg, 3.0 mmol, 3 equiv.) were mixed with glacial AcOH (20 ml). The suspension was stirred at room tepmperature for 2 days and conversion was determined by ³¹P NMR. Then, solvents were removed on rotary evaporator and an oily residue was co-evaporated with toluene (2×5 ml) and once with water (5 ml). Oily residue was dissolved in water (1 ml) and purified by C18 silica column chromatography (product was eluted by pure water after small delay). Fractions containing products were combined and evaporated to dryness. Then, the solidified product was triturated in MeOH (5 ml), filtered off and washed with Et₂O (2×5 ml). White powder, **28a**·0.5H₂O (151 mg, 49 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 0.4 + 0.4): 3.44 (H–P–C<u>H</u>₂–N, d, ²J_{HP} 10.5, 2H), 3.52 (HO–P–C<u>H</u>₂–N, d, ³J_{HH} 12.6, 2H), 4.72 (Ph–C<u>H</u>₂–N, s, 2H), 7.16 (<u>H</u>–P, dt, ¹J_{HP} 557.7, ³J_{HH} 1.7, 1H), 7.49–7.66 (Ph, m, 5H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 0.4 + 0.4): 51.7 (HO–P–<u>C</u>H₂–N, dd, ¹J_{CP} 136.4, ³J_{CP} 4.1), 53.8 (H–P–<u>C</u>H₂–N, dd, ¹J_{CP} 83.6, ³J_{CP} 4.2), 61.3 (Ph–<u>C</u>H₂–N, t, ³J_{HP} 3.5), 129.4 (*i*-Ph), 130.1 (*m*-Ph), 131.2 (*p*-Ph), 132.2 (*o*-Ph) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.4 + 0.4): 8.0 (HO–<u>P</u>, t, ²J_{PH} 12.7, 1P), 10.9 (H–<u>P</u>, dt, ¹J_{PH} 556.4, ²J_{PH} 10.5, 1P) MS(+): 280 (280, [M+H]⁺), 559 (559, [2M+H]⁺) MS(-): 278 (278, [M–H]⁻), 557 (557, [2M–H]⁻) HRMS(+) (found (*calc*)): 280.0506 (*280.0498*, C₉H₁₆NO₅P₂) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.59 {1}, 0.25 {1.5} EA(found (*calc* M · 0.5 H₂O)): C 37.79 (*37.51*), H 5.30 (*5.60*), N 4.90 (*4.86*), P 25.24 (*21.50*)

Bis{[(N-benzyl)-(N-methylphosphonic acid)-aminomethyl}phosphinic acid 28b.

In 25-ml flask, (*N*-benzyl)-aminomethylphosphonic acid (100 mg, 0.5 mmol, 1 equiv.), paraformaldehyde (33 mg, 0.6 mmol, 2.2 equiv.) and H₃PO₂ (as 50% aq. solution, 66 mg, 1.0 mmol, 1 equiv.) were mixed with glacial AcOH (10 ml). The suspension was stirred at room temperature for 2 days and conversion was determined by ³¹P NMR. Then, solvents were removed on rotary evaporator and an oily residue was co-evaporated with toluene (2×5 ml) and once with water (5 ml). An oily residue was dissolved in water (1 ml) and purified by C18 silica column chromatography (elution with gradient: pure water to ACN:water:TFA = 9:1:0.01). Fractions containing pure products were combined and evaporated to dryness. The residue was dissolved in water (2 ml) and the solution was left to crystallize in fridge (1–2 days). Solidified product was filtered off and washed with acetone (2 ml) and with Et₂O (2×5 ml). White powder, **28b**·0.5H₂O (56 mg, 22 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 0.6 + 0.4): 3.47 (HO–P–C<u>H</u>₂–N, d, ²*J*_{HP} 12.4, 4H), 3.61 (C<u>H</u>₂–P–C<u>H</u>₂, d, ²*J*_{HP} 9.1, 4H), 4.68 (Ph–C<u>H</u>₂–N, s, 4H), 7.47–7.67 (Ph, m, 10H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 0.6 + 0.4): 51.6 (HO–P–<u>C</u>H₂–N, d, ¹*J*_{CP} 135.4), 53.4 (<u>C</u>H₂–P–<u>C</u>H₂, d, ¹*J*_{CP} 94.1), 61.9 (Ph–<u>C</u>H₂–N), 129.1 (*i*-Ph), 130.1 (*m*-Ph), 131.2 (*p*-Ph), 132.4 (*o*-Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.6 + 0.4): 5.9–9.5 (HO–<u>P</u>, m, 2P), 14.5–17.2 (CH₂–<u>P</u>–CH₂, m, 1P)

 $\mathbf{MS}(+): 493 \ (493, [M+H]^{+}), 515 \ (515, [M+Na]^{+}), 531 \ (531, [M+K]^{+})$ $\mathbf{MS}(-): 491 \ (491, [M-H]^{-})$

HRMS(+) (found (*calc*)): 515.0880 (515.0872, C₁₈H₂₇N₂O₈P₃Na)

TLC (conc. aq. NH₃ : MeOH = $1:\{x\}$): 0.41 {1}, 0.17 {2}, 0.09 {5}

EA(found (calc M · 0.5H₂O)): C 43.19 (43.12), H 5.40 (5.63), N 5.49 (5.59)

<u>General procedure for reaction of phosphonylmethylated secondary amines (Table 4) in the paper</u> <u>text</u>

(N-Carboxymethyl)-(N-methylphosphonic acid)-aminomethyl-H-phosphinic acid 29.

From 170 mg (1.0 mmol) of (N-acetic acid)-aminomethylphosphonic acid. White powder, 29 (143 mg, 58 %).

¹**H NMR** (D₂O + *t*BuOH, pD = -0.1 + 0.4): 3.64 (H–P–C<u>H</u>₂–N, d, ²*J*_{HP} 10.5, 2H), 3.69 (HO–P–C<u>H</u>₂–N, d, ²*J*_{HP} 12.5, 2H), 4.47 (N–C<u>H</u>₂–COOH, s, 2H), 7.30 (<u>H</u>–P, d, ¹*J*_{HP} 557.8, 1H) ¹³C{¹**H**} **NMR** (D₂O + *t*BuOH, pD = -0.1 + 0.4): 53.2 (HO–P–<u>C</u>H₂–N, dd, ¹*J*_{CP} 136.7, ³*J*_{CP} 3.9), 55.7 (H–P–<u>C</u>H₂–N, dd, ¹*J*_{CP} 83.2, ³*J*_{CP} 3.4), 56.9 (HOOC–<u>C</u>H₂–N, t, ³*J*_{CP} 3.9), 168.7 (N–CH₂–<u>C</u>OOH) ³¹**P NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = -0.1 + 0.4): 7.1 (HO–<u>P</u>, t, ²*J*_{PH} 12.3, 1P), 10.2 (H–<u>P</u>, dt, ¹*J*_{PH} 557.8, ²*J*_{PH} 10.5, 1P) **MS**(+): 248 (248, [M+H]⁺), 495 (495, [2M+H]⁺), 517 (517, [2M+Na]⁺) **MS**(+): (found (*calc*)): 269.9905 (*269.9903*, C₄H₁₁NO₇P₂Na) **TLC** (*conc.* aq. NH₃ : **MeOH** = **1**:{*x*}): 0.63 {1}, 0.29 {2}, 0.11 {5} **EA** (**M**): C 19.77 (*19.44*), H 4.68 (*4.46*), N 5.16 (*5.67*), P 22.63 (*25.07*)

N, N-Bis(methylphosphonic acid)-aminomethyl-H-phosphinic acid 30.

From 205 mg (1.0 mmol) of amino-N,N-bis(methylphosphonic acid). Viscous oil, 30 (195 mg, 69 %).

¹**H NMR** (D₂O + *t*BuOH, pD = -0.2 + 0.4): 3.73 (H–P–C<u>H</u>₂–N, d, ²*J*_{HP} 10.5, 2H), 3.81 (HO–P–C<u>H</u>₂–N, d, ³*J*_{HH} 12.7, 4H), 7.33 (<u>H</u>–P, dt, ¹*J*_{HP} 563.2, ³*J*_{HH} 1.8, 1H) ¹³C{¹**H**} **NMR** (D₂O + *t*BuOH, pD = -0.2 + 0.4): 53.9 (HO–P–<u>C</u>H₂–N, dt, ¹*J*_{CP} 138.0, ³*J*_{CP} 3.9), 55.3–55.6 and 56.1– 56.4 (H–P–<u>C</u>H₂–N, dm, ¹*J*_{CP} 85.2) ³¹**P NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = -0.2 + 0.4): 9.0 (HO–<u>P</u>, t, ²*J*_{PH} 12.6, 2P), 12.1 (H–<u>P</u>, dt, ¹*J*_{PH} 563.5, ²*J*_{PH} 10.5, 1P) **MS**(+): 284 (284, [M+H]⁺), 567 (567, [2M+H]⁺) **MS**(-): 282 (282, [M–H]⁻), 565 (565, [2M–H]⁻) **HRMS**(–) (**found** (*calc*)): 281.9708 (*281.9703*, C₃H₁₁NO₈P₃) **TLC** (**conc. aq. NH₃ : MeOH = 1:{x}): 0.29 {1}, 0.13 {2}, 0.00 {5}** (N,N'-Dibenzyl)-ethylenediamine-N,N'-bis(methyl-H-phosphinic acid) 31.

In 25-ml flask, *N*,*N*²-dibenzyl-ethylenediamine (240 µl, 1.0 mmol, 1 equiv.), paraformaldehyde (120 mg, 4.0 mmol, 4 equiv.), and H₃PO₂ (as 50% aq. solution, 290 mg, 2.2 mmol, 2.2 equiv.) were mixed with glacial AcOH (10 ml). The suspension was heated at 40 °C for 1 day and conversion was determined by ³¹P NMR. Then, solvents were removed on rotary evaporator and the oily residue was co-evaporated with toluene (2×5 ml) and once with water (5 ml). Then, the oily residue was purified by flash silica column chromatography (C18, gradient from pure water to ACN:water:TFA = 9:1:0.01). Fractions containing pure product were combined and concentrated *in vacuo*. The residue was suspended / dissolved in water (10 ml) and left to finish crystallization in fridge. After 1 day, the solids were filtered off, washed with acetone (5 ml) and with Et₂O (2×5 ml). White powder, **31**·2H₂O (220 mg, 51 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 12.4 + 0.4): 2.66 (P–C<u>H</u>₂–N, d, ²J_{HP} 10.2, 4H), 2.76 (N–C<u>H</u>₂–C<u>H</u>₂–N, s, 4H), 3.76 (Ph–C<u>H</u>₂–N, s, 4H), 7.00 (<u>H</u>–P, d, ¹J_{HP} 510.6, 2H), 7.24–7.48 (Ph, m, 10H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 12.4 + 0.4): 51.7 (N–<u>C</u>H₂–<u>C</u>H₂–N, d, ³J_{CP} 8.6), 55.8 (P–<u>C</u>H₂–N, d, ¹J_{CP} 102.5), 59.8 (Ph–<u>C</u>H₂–N, d, ³J_{CP} 6.1), 128.4 (*p*-Ph), 129.2 (Ph), 130.8 (Ph), 137.9 (*i*-Ph) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 12.4 + 0.4): 23.7 (dt, ¹J_{PH} 510.8, ²J_{PH} 10.5) MS(+): 419 (419, [M+Na]⁺) MS(-): 395 (395, [M–H]⁻) HRMS(+) (found (*calc*)): 397.1390 (*397.1446*, C₁₈H₂₇N₂O₄P₂) TLC (conc. aq. NH₃ : EtOH = 1:{*x*}): 0.70 {5}, 0.55 {10}, 0.48 {20}, 0.44 {35} EA(found (*calc* M · 2H₂O)): C 49.58 (*49.48*), H 6.90 (*7.04*), N 6.21 (*6.41*), P 14.61 (*14.18*)

(N,N'-Dibenzyl)-ethylenediamine-(N-methyl)-(N'-methyl-H-phosphinic acid) 31-Me.

In 25-ml flask, *N*,*N*^{*}-dibenzyl-ethylenediamine (240 μ l, 1.0 mmol, 1 equiv.), paraformaldehyde (120 mg, 4.0 mmol, 4 equiv.) and H₃PO₂ (as 50% aq. solution, 290 mg, 2.2 mmol, 2.2 equiv.) were mixed with glacial AcOH (10 ml). The suspension was heated at 40 °C for 1 day and conversion was determined by ³¹P NMR. Then, solvents were removed on rotary evaporator and the oily residue was co-evaporated with toluene (2×5 ml) and once with water (5 ml). Then, the oily residue was purified on flash silica column chromatography (C18, gradient from pure water to ACN:water:TFA = 9:1:0.01). Fractions containing pure product were combined and concentrated *in vacuo*. Viscous oil (33 mg, 10 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 3.4 + 0.4): 2.68 (C<u>H</u>₃–N, s, 3H), 2.86 (P–C<u>H</u>₂–N, dd, ²*J*_{HP} 9.0, ³*J*_{HH} 1.8 Hz, 2H), 3.14 (N–C<u>H</u>₂–CH₂–N–CH₃, t, ³*J*_{HH} 6.2, 2H), 3.28 (N–CH₂–C<u>H</u>₂–N–CH₃, t, ³*J*_{HH} 6.1, 2H), 3.91 (Ph–C<u>H</u>₂–N–CH₂–P, s, 2H), 4.14 (Ph–C<u>H</u>₂–N–CH₃, s, 2H), 6.83 (<u>H</u>–P, dt, ¹*J*_{HP} 525.7, ³*J*_{HH} 1.7, 1H), 7.34–7.59 (Ph, m, 10H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 3.4 + 0.4): 40.4 (<u>C</u>H₃–N), 49.8 (N–<u>C</u>H₂–CH₂–N–CH₃, d, ³*J*_{CP} 6.6), 52.8 (N–CH₂– <u>C</u>H₂–N–CH₃), 54.4 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 102.6), 59.6 (Ph–<u>C</u>H₂–N–CH₃), 61.9 (Ph–<u>C</u>H₂–N–CH₂–P, d, ³*J*_{CP} 4.7), 129.3 (Ph), 2× 129.6 (Ph), 130.0 (Ph), 130.8 (2× Ph), 131.0 (Ph), 131.6 (Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 3.4 + 0.4): 19.4–20.2 and 22.6–23.4 (dm, ¹*J*_{PH} 525.9) MS(+): 333 (333, [M+H]⁺), 354 (354, [M+Na]⁺), 665 (665, [2M+H]⁺) MS(–): 331 (331, [M–H]⁻), 663 (663, [2M–H]⁻) HRMS(+) (found (*calc*)): 333.1735 (*333.1726*, C₁₈H₂₆N₂O₂P) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.84 {5}, 0.72 {10}, 0.67 {20}, 0.61 {35}

General procedure for reaction of poly-secondary amines (Table 5) in the paper text

(N,N'-Dibenzyl)-propylenediamine-N,N'-bis(methyl-H-phosphinic acid) 32.

From 82 mg (0.25 mmol) of N,N'-dibenzyl-propylenediamine 2HCl converted to its acetate salt on Dowex 1 in OH⁻-form, elution off with 20% aq. AcOH. Viscous oil (70 mg, 68 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 4.8 + 0.4): 2.15–2.32 (CH₂–CH₂–CH₂, m, 2H), 3.27 (P–C<u>H₂–</u>N, d, ³*J*_{HP} 11.2, 4H), 3.28–3.34 (C<u>H₂–CH₂–CH₂, m, 4H), 4.51 (Ph–CH₂–N, s, 4H), 7.05 (H</u>–P, dt, ¹*J*_{HP} 551.4, ³*J*_{HH} 1.5, 2H), 7.47–7.62 (Ph, m, 10H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 4.8 + 0.4): 19.7 (CH₂–<u>C</u>H₂–CH₂), 52.1 (<u>C</u>H₂–CH₂–<u>C</u>H₂, d, ³*J*_{CP} 4.1 Hz), 52.7 (P– <u>C</u>H₂–N, d, ¹*J*_{CP} 82.9), 60.4 (Ph–<u>C</u>H₂–N, d, ³*J*_{CP} 3.7), 129.3 (*i*-Ph), 130.2 (*m*-Ph), 131.2 (*p*-Ph), 131.9 (*o*-Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 4.8 + 0.4): 10.6 (dt, ¹*J*_{PH} 551.4, ²*J*_{PH} 10.5) MS(+): 455 (455, [M+2Na–H]⁺) MS(-): 409 (409, [M–H]⁻) HRMS(+) (found (*calc*)): 411.1606 (*411.1597*, C₁₉H₂₉N₂O₄P₂) TLC conc. aq. NH₃: EtOH = 1:{*x*}: 0.72 {5}, 0.44 {10}, 0.41 {20}, 0.36 {35}

(N,N'-Dibenzyl)-hexylenediamine-N,N'-bis(methyl-H-phosphinic acid) 33.

From 93 mg (0.25 mmol) of N,N'-dibenzyl-hexylenediamine·2HCl converted to its acetate salt on Dowex1 in OH⁻ form, elution off with 20% aq. AcOH. Viscous oil (91 mg, 80 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 5.0 + 0.4): 1.30–1.40 (**3**, m, 4H), 1.66–1.86 (**2**, m, 4H), 3.21–3.27 (**1**, m, 4H), 3.26 (P– C<u>H</u>₂–N, d, ²*J*_{HP} 10.7, 4H), 4.50 (Ph–C<u>H</u>₂–N, bs, 4H), 7.09 (<u>H</u>–P, dt, ¹*J*_{HP} 549.6, ³*J*_{HH} 1.6, 2H), 7.47–7.61 (Ph, m, 10H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 5.0 + 0.4): 23.6 (**2**), 25.7 (**3**), 52.4 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 83.6), 55.3 (**1**, d, ³*J*_{CP} 4.0), 59.9 (Ph–<u>C</u>H₂–N, d, ³*J*_{CP} 3.6), 129.5 (*i*-Ph), 130.1 (*m*-Ph), 131.0 (*p*-Ph), 131.9 (*o*-Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 5.0 + 0.4): 10.7 (dt, ¹*J*_{PH} 549.6, ²*J*_{PH} 10.6) MS(+): 453 (453, [M+H]⁺), 475 (475, [M+Na]⁺) MS(-): 451 (451, [M–H]⁻), 225 (225, [M–2H]^{2–}) HRMS(+) (found (*calc*)): 453.2080 (*453.2067*, C₂₂H₃₅N₂O₄P₂) TLC (conc. aq. NH₃ : EtOH = 1:{*x*}): 0.81 {5}, 0.66 {10}, 0.56 {20}, 0.52 {35}

From 105 mg (0.25 mmol) of N,N''-dibenzyl-dipropylenetriamine 3HCl converted to its acetate salt on Dowex 1 in OH⁻-form, elution off with 20% aq. AcOH. Viscous oil (116 mg, 85 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 4.7 + 0.4): 2.13–2.32 (**2**, m, 4H), 3.23 (P–C<u>H</u>₂–N, dt, ²*J*_{HP} 10.2, ³*J*_{HH} 1.5, 2H), 3.25–3.34 (**1**, m, 4H), 3.30 (2× P–C<u>H</u>₂–N, dt, ²*J*_{HP} 10.4, ³*J*_{HH} 1.5, 4H), 3.39 (**1**, t, ³*J*_{HH} 8.0, 4H), 4.55 (Ph–C<u>H</u>₂–N, s, 4H), 7.06 (<u>H</u>–P, dt, ¹*J*_{HP} 551.8, ³*J*_{HH} 1.5, 2H), 7.17 (<u>H</u>–P, dt, ¹*J*_{HP} 546.9, ³*J*_{HH} 1.5, 1H), 7.48–7.64 (Ph, m, 10H)

¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 4.7 + 0.4): 19.9 (**2**), 52.3 (**3**, d, ${}^{3}J_{CP}$ 3.9), 52.6 (2× P–<u>C</u>H₂–N, d, ${}^{1}J_{CP}$ 83.0), 52.8 (**1**, d, ${}^{3}J_{CP}$ 4.3), 53.0 (P–<u>C</u>H₂–N, d, ${}^{1}J_{CP}$ 84.4), 60.6 (Ph–<u>C</u>H₂–N, d, ${}^{3}J_{CP}$ 3.7), 129.3 (*i*-Ph), 130.2 (*m*-Ph), 131.2 (*p*-Ph), 131.9 (*o*-Ph)

³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 4.7 + 0.4): 10.6 (dt, ¹*J*_{PH} 551.8, ²*J*_{PH} 10.4, 2P), 11.1 (dt, ¹*J*_{PH} 546.3, ²*J*_{PH} 7.1, 1P)

MS(-): 544 (544, [M–H]⁻), 272 (272, [M–2H]^{2–})

HRMS(+) (found (*calc*)): 568.1877 (568.1866, C₂₃H₃₈N₃O₆P₃Na)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.68 {5}, 0.33 {10}, 0.24 {20}, 0.21 {35}

(N,N"-Dibenzyl)-hexylenetriamine-N,N',N'-tris(methyl-H-phosphinic acid) 35.

From 133 mg (0.25 mmol) of $N_{,N''}$ -dibenzyl-dipropylenetriamine·3HCl·3/2H₂O converted to its acetate salt on Dowex 1 in OH⁻-form, elution off with 20% aq. AcOH. Viscous oil (129 mg, 82 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 2.7 + 0.4): 1.33–1.49 (**3** + **4**, m, 8H), 1.64–1.91 (**2** + **5**, m, 8H), 3.21–3.42 (**1** + **6** + 2× P–C<u>H₂–N + P–C<u>H</u>₂–N, m, 14H), 4.40–4.64 (Ph–C<u>H</u>₂–N, m, 4H), 7.09 (<u>H</u>–P, dt, ¹*J*_{HP} 550.7, ³*J*_{HH} 1.3, 2H), 7.24 (<u>H</u>–P, dt, ¹*J*_{HP} 545.8, ³*J*_{HH} 1.2, 1H), 7.48–7.63 (Ph, m, 10H)</u>

¹³C{¹H} **NMR** (D₂O + *t*BuOH, pD = 2.7 + 0.4): 2× 23.7 (**2** + **5**), 2× 25.8 (**3** + **4**), 52.4 (2× P–<u>C</u>H₂–N, d, ¹*J*_{CP} 83.7), 52.9 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 84.3), 55.4 (**1**, d, ⁴*J*_{CP} 3.9), 55.8 (**6**, d, ⁴*J*_{CP} 3.8), 59.9 (Ph–<u>C</u>H₂–N, d, ³*J*_{CP} 3.5), 129.5 (*i*-Ph), 130.1 (*m*-Ph), 131.0 (*p*-Ph), 131.9 (*o*-Ph)

³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 2.7 + 0.4): 10.0 (dt, ¹*J*_{PH} 546.5, ²*J*_{PH} 11.0, 1P), 10.2 (dt, ¹*J*_{PH} 549.2, ²*J*_{PH} 10.6, 2P)

 $MS(+): 630 (630, [M+H]^+)$

MS(-): 628 (628, [M-H]⁻)

HRMS(+) (found (*calc*)): 630.2997 (630.2985, C₂₉H₅₁N₃O₆P₃),

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.71 {5}, 0.50 {10}, 0.39 {20}, 0.32 {35}

<u>General procedure for oxidation of phosphinic acids to corresponding phosphonic acids and benzyl</u> group removal (Table 6) in the paper text

 $(N,N'-Dibenzyl)-ethylenediamine-N,N'-bis(methylphosphonic\ acid)\ \textbf{31a}.$

Procedure **D**.

From 110 mg (0.25 mmol) of **31**. White powder **31a**·0.25H₂O (110 mg, 95 %).

¹**H NMR** (D₂O + *t*BuOH, pD = 11.4 + 0.4): 2.67 (P–C<u>H</u>₂–N, d, ²J_{HP} 11.5, 4H), 2.80 (N–C<u>H</u>₂–C<u>H</u>₂–N, s, 4H), 3.84 (Ph–C<u>H</u>₂–N, s, 4H), 7.27–7.44 (Ph, m, 10H) ¹³C{¹**H**} **NMR** (D₂O + *t*BuOH, pD = 11.4 + 0.4): 51.3 (N–<u>C</u>H₂–<u>C</u>H₂–N, d, ³J_{CP} 7.9), 53.9 (P–<u>C</u>H₂–N, d, ¹J_{CP} 137.4), 58.9 (Ph–<u>C</u>H₂–N, d, ³J_{CP} 3.9), 128.2 (*p*-Ph), 129.1 (*m*-Ph), 131.0 (*o*-Ph), 138.1 (*i*-Ph) ³¹**P NMR** (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 11.4 + 0.4): 15.1 (t, ²J_{PH} 11.3) **MS**(+): 473 (473, [M–H+2Na]⁺), 495 (495, [M–2H+3Na]⁺) **HRMS**(+) (found (*calc*)): 451.1163 (*451.1158*, C₁₈H₂₆N₂O₆P₂Na) **TLC** (**conc. aq. NH₃ : MeOH = 1:{x}): 0.70 {1}, 0.33 {2}, 0.17 {5} EA** (found (*calc* M • 1/4H₂O)): C 50.01 (*49.95*), H 6.03 (*6.17*), N 6.61 (*6.47*), P 13.82 (*14.31*)

Ethylenediamine-N,N'-bis(methylphosphonic acid) 31b.

Procedure E.

From 87 mg (0.20 mmol) of **31a**. White powder **31b**·2H₂O (43 mg, 76 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 6.9 + 0.4): 3.03 (P–C<u>H</u>₂–N, d, ²J_{HP} 11.7, 4H), 3.53 (N–C<u>H</u>₂–C<u>H</u>₂–N, s, 4H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 6.9 + 0.4): 46.0 (N–<u>C</u>H₂–<u>C</u>H₂–N, d, ³J_{CP} 7.5), 46.4 (P–<u>C</u>H₂–N, d, ¹J_{CP} 130.0) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 6.9 + 0.4): 8.6 (t, ²J_{PH} 11.9) MS(+): 293 (293, [M–H+2Na]⁺) HRMS(+) (found (*calc*)): 271.0224 (271.0219, C₄H₁₄N₂O₆P₂Na) TLC (conc. aq. NH₃ : MeOH = 1:{x}): 0.63 {1}, 0.07 {2}, 0.03 {5} EA (found (*calc* M · 2H₂O)): C 17.31 (16.91), H 6.02 (6.39), N 9.52 (9.86), P 20.82 (21.80) (N,N'-Dibenzyl)-propylenediamine-N,N'-bis(methylphosphonic acid) 32a.

<u>Procedure C</u>. From 103 mg (0.25 mmol) of **32**. Viscous oil (107 mg, 97 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 1.0 + 0.4): 2.21–2.35 (CH₂–CH₂–CH₂, m, 2H), 3.31 (CH₂–CH₂–CH₂, t, ³*J*_{HH} 8.1, 4H), 3.36 (P–C<u>H</u>₂–N, d, ³*J*_{HP} 12.9, 4H), 4.56 (Ph–C<u>H</u>₂–N, bs, 4H), 7.48–7.63 (Ph, m, 10H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 1.0 + 0.4): 19.3 (CH₂–C<u>H</u>₂–CH₂), 49.6 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 136.5), 51.2 (<u>C</u>H₂– CH₂–<u>C</u>H₂, d, ³*J*_{CP} 4.1), 60.0 (Ph–<u>C</u>H₂–N, d, ³*J*_{CP} 4.1), 129.2 (*i*-Ph), 130.1 (*m*-Ph), 131.1 (*p*-Ph), 131.9 (*o*-Ph) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.0 + 0.4): 8.7 (t, ²*J*_{PH} 12.8) MS(+): 443 (443, [M+H]⁺), 465 (465, [M+Na]⁺) MS(-): 441 (441, [M–H]⁻) HRMS(+) (found (*calc*)): 443.1508 (*443.1495*, C₁₉H₂₉N₂O₆P₂) TLC (conc. aq. NH₃ : MeOH = 1:{x}): 0.74 {1}, 0.57 {2}, 0.40 {5}

Propylenediamine-N,N'-bis(methylphosphonic acid) 32b.

$$H_2O_3P$$
 N PO_3H_2 H H PO_3H_2

Procedure E.

From 88 mg (0.20 mmol) of **32a**. White powder, **32b**·1/2H₂O (43 mg, 81 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 5.5 + 0.4): 2.13–2.27 (CH₂–CH₂–CH₂, m, 2H), 3.06 (P–C<u>H</u>₂–N, d, ²*J*_{HP} 12.0, 4H), 3.28 (C<u>H</u>₂–CH₂–C<u>H</u>₂–C<u>H</u>₂, t, ³*J*_{HH} 7.8, 4H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 5.5 + 0.4): 23.2 (CH₂–<u>C</u>H₂–CH₂), 45.9 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 131.1), 46.8 (<u>C</u>H₂–CH₂–<u>C</u>H₂, d, ³*J*_{CP} 6.7) ³¹P NMR (D₂O + NaOD + *t*BuOH / 85% aq H₃PO₄, pD = 5.5 + 0.4): 8.2 (t, ²*J*_{PH} 12.3) MS(+): 263 (263, [M+H]⁺), 329 (329, [M–2H+3Na]⁺) HRMS(+) (found (*calc*)): 285.0383 (*285.0376*, C₅H₁₆N₂O₆P₂Na) TLC (conc. aq. NH₃ : MeOH = 1:{*x*}): 0.56 {1}, 0.11 {2}, 0.03 {5} EA(found (*calc* M · 1/2H₂O)): C 22.30 (*22.15*), H 5.93 (*6.32*), N 9.14 (*9.33*) (N,N'-Dibenzyl)-hexylenediamine-N,N'-bis(methylphosphonic acid) 33a

Procedure C.

From 113 mg (0.25 mmol) of 33. Viscous oil (115 mg, 95 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 1.3 + 0.4): 1.28–1.40 (**3**, m, 4H), 1.62–1.90 (**2**, m, 4H), 3.17–3.33 (**1**, m, 4H), 3.34 (P– C<u>H</u>₂–N, dt, ²*J*_{HP} 12.9, ³*J*_{HH} 1.4, 4H), 4.37–4.72 (Ph–C<u>H</u>₂–N, m, 4H), 7.47–7.64 (Ph, m, 10H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 1.3 + 0.4): 23.4 (**2**), 25.7 (**3**), 49.5 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 137.6), 54.5 (**1**, d, ³*J*_{CP} 4.2), 59.4 (Ph–<u>C</u>H₂–N, d, ³*J*_{CP} 4.0), 129.6 (*i*-Ph), 130.0 (*m*-Ph), 130.9 (*p*-Ph), 131.9 (*o*-Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.3 + 0.4): 7.9 (t, ²*J*_{PH} 12.9) MS(+): 485 (485, [M+H]⁺), 507 (507, [M+Na]⁺) MS(–): 483 (483, [M–H]⁻) HRMS(+) (found (*calc*)): 507.1802 (*507.1784*, C₂₂H₃₄N₂O₆P₂Na) TLC (conc. aq. NH₃: MeOH = 1:{x}): 0.67 {1}, 0.36 {2}, 0.13 {5}

Hexylenediamine-N,N'-bis(methylphosphonic acid) 33b.

Procedure C.

From 97 mg (0.20 mmol) of **33a**. Viscous oil (45 mg, 74 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 11.6 + 0.4): 1.33–1.46 (**3**, m, 4H), 1.55–1.68 (**2**, m, 4H), 2.76 (P–C<u>H₂–N, d</u>, ²J_{HP} 12.1, 4H), (**1**, t, ³J_{HH} 7.6, 4H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 11.6 + 0.4): 26.4 (**3**), 27.5 (**2**), 47.5 (P–<u>C</u>H₂–N, d, ¹J_{CP} 131.9), 50.8 (**1**, d, ³J_{CP} 8.9) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 11.6 + 0.4): 12.4 (t, ²J_{PH} 11.6) HRMS(+) (found (*calc*)): 327.0851 (*327.0845*, C₈H₂₂N₂O₆P₂Na) **TLC (conc. aq. NH₃ : MeOH = 1:{x}): 0.74 {1}, 0.11 {2}, 0.03 {5}** (N,N"-Dibenzyl)-propylenetriamine-N,N',N"-tris(methylphosphonic acid) 34a.

From 136 mg (0.25 mmol) of 34. Viscous oil(141 mg, 95 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 1.2 + 0.4): 2.19–2.39 (**2**, m, 4H), 3.30–3.50 (**3** + **1**, m, 8H),3.38 (2× P–C<u>H₂–N + P–CH₂–N, d, ²J_{HP} 12.9, 4H), 4.59 (Ph–CH₂–N, s, 4H), 7.47–7.63 (Ph, m, 10H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 1.2 + 0.4): 19.4 (**2**), 49.3 (2× P–<u>C</u>H₂–N, d, ¹J_{CP} 137.1), 50.1 (P–<u>C</u>H₂–N, d, ¹J_{CP} 136.4), 51.3 (**3**, d, ³J_{CP} 3.5), 52.5 (**1**, d, ³J_{CP} 4.2), 60.3 (Ph–<u>C</u>H₂–N, d, ³J_{CP} 3.7), 129.3 (*i*-Ph), 130.1 (*m*-Ph), 131.1 (*p*-Ph), 132.0 (*o*-Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.2 + 0.4): 7.5 (t, ²J_{PH} 12.8, 1P), 7.9 (t, ²J_{PH} 12.8, 2P) MS(+): 594 (594, [M+H]⁺), 615 (615, [M+Na]⁺) MS(-): 592 (592, [M–H]⁻) HRMS(+) (found (*calc*)): 594.1904 (*594.1894*, C₂₃H₃₉N₃O₉P₃) TLC (conc. aq. NH₃ : MeOH = 1:{x}): 0.63 {1}, 0.20 {2}, 0.17 {5}</u>

*Propylenetriamine-*N,N',N''-*tris(methylphosphonic acid)* **34b**.

Procedure C.

From 119 mg (0.20 mmol) of **34a**.Viscous oil (73 mg, 88 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 1.1 + 0.4): 2.18–2.34 (**2**, m, 4H), 3.26 (2× P–C<u>H</u>₂–N, d, ²*J*_{HP} 12.9, 4H), 3.29 (**3**, t, ³*J*_{HH} 7.8, 4H), 3.44 (P–C<u>H</u>₂–N, d, ²*J*_{HP} 12.9, 2H), 3.44–3.55 (**1**, m, 4H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 1.1 + 0.4): 21.1 (**2**), 44.6 (2× P–<u>C</u>H₂–N, d, ¹*J*_{CP} 139.4), 46.5 (**3**, d, ³*J*_{CP} 7.5), 49.9 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 136.4), 52.7 (**1**, d, ³*J*_{CP} 4.2) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.1 + 0.4): 7.7 (t, ²*J*_{PH} 12.8, 1P), 9.7 (t, ²*J*_{PH} 12.8, 2P) MS(+): 414 (414, [M+H]⁺) MS(–): 412 (412, [M–H]⁻) HRMS(+) (found (*calc*)): 436.0777 (*436.0774*, C₉H₂₆N₃O₉P₃Na) TLC (conc. aq. NH₃ : MeOH = 1:{x}): 0.44 {1}, 0.00 {2} (N,N''-Dibenzyl)-hexylenetriamine-N,N',N''-tris(methylphosphonic acid) 35a.

Procedure C.

From 157 mg (0.25 mmol) of **35**.Viscous oil (164 mg, 97 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 0.4 + 0.4): 1.32–1.46 (**3** + **4**, m, 8H), 1.64–1.92 (**2** + **5**, m, 8H), 3.17–3.36 (**1** + **6**, m, 8H), 3.33 (1× P–C<u>H</u>₂–N, d, ²J_{HP} 13.1, 2H), 3.35 (2× P–C<u>H</u>₂–N, d, ²J_{HP} 12.9, 4H), 4.38–4.70 (Ph–C<u>H</u>₂–N, m, 4H), 7.49–7.62 (Ph, m, 10H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 0.4 + 0.4): 2× 23.5 (**2** + **5**), 2× 25.8 (**3** + **4**), 49.5 (2× P–<u>C</u>H₂–N, d, ¹J_{CP} 137.5), 49.9 (1× P–<u>C</u>H₂–N, d, ¹J_{CP} 137.7), 54.6 (**6**, d, ³J_{CP} 3.9), 55.4 (**1**, d, ³J_{CP} 3.6), 59.4 (Ph–<u>C</u>H₂–N, d, ³J_{CP} 4.1), 129.6 (*i*-Ph, d, ⁴J_{CP} 0.3), 130.0 (*m*-Ph), 130.9 (*p*-Ph), 131.9 (*o*-Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.4 + 0.4): 8.5 (t, ²J_{PH} 13.0, 2P), 8.6 (t, ²J_{PH} 13.2, 1P) MS(+): 362 (362, [M+2Na]²⁺), 678 (678, [M+H]⁺), 700 (700, [M+Na]⁺) MS(-): 338 (338, [M–2H]²⁻), 676 (676, [M–H]⁻) HRMS(+) (found (*calc*)): 700.2671 (700.2652, C₂₉H₅₀N₃O₉P₃Na) TLC (conc. aq. NH₃: MeOH = 1:{x}): 0.70 {1}, 0.47 {2}, 0.27 {5}

Hexylenetriamine-N,N',N''-tris(methylphosphonic acid) 35b.

<u>Procedure C</u>. From 135 mg (0.20 mmol) of **35a**.Viscous oil (85 mg, 85 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 0.5 + 0.4): 1.36–1.51 (**3** + **4**, m, 8H), 1.67–1.83 (**2** + **5**, m, 8H), 3.13–3.21 (**6**, m, 4H), 3.21 (2× P–C<u>H</u>₂–N, d, ²*J*_{HP} 13.1, 4H), 3.25–3.42 (**1**, m, 4H), 3.35 (1× P–C<u>H</u>₂–N, d, ²*J*_{HP} 13.0, 2H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 0.5 + 0.4): 23.5 (**2**), 25.7 (**5**), 2× 25.8 (**3** + **4**), 44.4 (2× P–CH₂–N, d, ¹*J*_{CP} 139.6), 49.8 (**6**, d, ⁴*J*_{CP} 6.8), 49.9 (1× P–CH₂–N, d, ¹*J*_{CP} 137.7), 55.4 (**1**, d, ⁴*J*_{CP} 4.3) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.5 + 0.4): 8.6 (t, ²*J*_{PH} 13.0, 1P), 10.2 (t, ²*J*_{PH} 12.8, 2P) MS(+): 498 (498, [M+H]⁺), 520 (520, [M+Na]⁺) MS(-): 496 (496, [M–H]⁻), 993 (993, [2M–H]⁻) HRMS(+) (found (*calc*)): 520.1711 (*520.1719*, C₁₅H₃₈N₃O₉P₃Na) TLC (conc. aq. NH₃ : MeOH = 1:{*x*}): 0.74 {1}, 0.11 {2}, 0.03 {5}

Reaction of cyclic polyamines

Piperazine-N,N'-bis(methyl-H-phosphinic acid) 16a.

In 25-ml flask, piperazine hexahydrate (194 mg, 1.0 mmol, 1 equiv.), paraformaldehyde (60 mg, 2.0 mmol, 2 equiv.), and H_3PO_2 (as 50% aq. solution, 145 mg, 1.1 mmol, 1.1 equiv.) were mixed with glacial AcOH (10 ml). The suspension was heated at 40 °C for 1 day and conversion was determined by ³¹P NMR. Then, solvents were removed on rotary evaporator and the oily residue was purified on strong anion exchanger (Dowex 1, 3×10-cm bed) in OH⁻ form. The column was washed with water and product was eluted off with 20% aq. AcOH. Eluate was concentrated *in vacuo* and the oily residue was re-purified on strong anion exchanger (Dowex 1, 3×10-cm bed) but in AcO⁻-form. The column was first washed with water which separated *N*-methylated mono substituted derivative **16**, and product was eluted off with 20% aq. AcOH. The eluate was concentrated *in vacuo* and the oily residue was filtered off and washed with Et₂O (2× 5 ml). White powder, **16a**·2H₂O (103 mg, 37 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 1.7 + 0.4): 3.36 (P–C<u>H</u>₂–N, dd, ²J_{HP} 10.5, ³J_{HH} 1.8, 4H), 3.80 (N–C<u>H</u>₂–C<u>H</u>₂–N, s, 8H), 7.25 (<u>H</u>–P, dt, ¹J_{HP} 550.9, ³J_{HH} 1.7, 2H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 1.7 + 0.4): 51.4 (N–<u>C</u>H₂–<u>C</u>H₂–N, d, ³J_{CP} 5.3), 56.3 (P–<u>C</u>H₂–N, d, ¹J_{CP} 83.2) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.7 + 0.4): 9.2 (dt, ¹J_{PH} 550.6, ²J_{PH} 10.6) MS(+): 265 (265, [M+Na]⁺), 281 (281, [M+K]⁺), 485 (485, [2M+H]⁺) MS(-): 241 (241, [M–H]⁻), 483 (483, [2M–H]⁻) HRMS(+) (found (*calc*)): 243.0633 (243.0664, C₆H₁₇N₂O₄P₂), 485.1202 (485.1249, C₁₂H₃₃N₄O₈P₄) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.50 {5}, 0.23 {10}, 0.17 {20}, 0.12 {35} EA(found (*calc* M · 2H₂O)): C 25.95 (25.91), H 6.87 (7.25), N 9.91 (10.07), P 21.16 (22.27) 1,4,7-Triazacyclononane-1,4,7-tris(methyl-H-phosphinic acid) 36.

In 50-ml flask, 1,4,7-triazacyclononane (tacn; 129 mg, 1.0 mmol, 1 equiv.), paraformaldehyde (150 mg, 5.0 mmol, 5 equiv.) and H₃PO₂ (as 50% aq. solution, 660 mg, 5.0 mmol, 5 equiv.) was mixed in AcOH (~10 ml) and stirred for 1 day. Then, conversion was determined by ³¹P NMR and the solution was concentrated *in vacuo*. The oily residue was purified on strong cation exchanger (Dowex 50, 3×5 -ml bed) and product was eluted off with water. Solvents were removed *in vacuo* and the oily residue was re-purified on strong cation exchanger (Dowex 50, 3×5 -ml bed) and product was eluted off with water. Solvents were was eluted with water after a delay (~5-ml fractions). Fractions containing pure products were combined and evaporated to dryness to get pure product. Product solidified in its EtOH solution (~5 ml) by adding excess of Me₂CO (~15 ml) and using ultrasound. Solids were filtered off and washed with acetone (5 ml), Et₂O (2× 5ml) and dried in oven (15 min, 75 °C). White powder, **36**·3/2H₂O (183 mg, 47 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 0.5 + 0.4): 3.36 (P–C<u>H</u>₂–N, d, ²J_{HP} 8.8, 6H), 3.59 (N–C<u>H</u>₂–C<u>H</u>₂–N, s, 12H), 7.29 (<u>H</u>–P, dt, ¹J_{HP} 547.2, ³J_{HH} 1.4, 3H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 0.5 + 0.4): 52.4 (N–<u>C</u>H₂–<u>C</u>H₂–N, d, ³J_{CP} 4.9), 56.6 (P–<u>C</u>H₂–N, d, ¹J_{CP} 89.5) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 0.5 + 0.4): 16.4 (dt, ¹J_{HP} 547.2, ²J_{PH} 8.7) MS(+): 364 (364, [M+H]⁺), 727 (727, [2M+H]⁺) MS(-): 362 (362, [M–H]⁻), 725 (725, [2M–H]⁻) HRMS(+) (found (*calc*)): 364.0948 (*364.0951*, C₉H₂₅N₃O₆P₃), 727.1797 (727.1829, C₁₈H₄₉N₆O₁₂P₆) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.56 {1.5}, 0.47 {2}, 0.26 {5}, 0.11 {10} EA(found (*calc* M · 3/2H₂O)): C 28.07 (27.70), H 6.09 (6.97), N 10.70 (10.77), P 23.56 (23.81)

1,4,7,10-Tetraazacyclododecane-1,7-bis(methyl-H-phosphinic acid) **37** and *1,4,7,10-Tetraazacyclododecane-7-methyl-1-(methyl-H-phosphinic acid)* **37-Me**.

Firstly, *trans*-Cbz₂cyclen dihydrochloride (0.52 g, 1.0 mmol) was transferred into its "free-base form" by washing of its CH₂Cl₂ solution (20 ml) with 5% aq. NaOH (3×5 ml). Organic phase was dried with anhydrous sodium sulfate and evaporated to dryness. In 25-ml flask, the oily residue of *trans*-Cbz₂cyclen (1.0 mmol, 1 equiv.), paraformaldehyde (90 mg, 3.0 mmol, 3 equiv.) and H₃PO₂ (as 50% aq. solution, 396 mg, 3.0 mmol, 3 equiv.) were mixed with glacial

AcOH (20 ml). The suspension was stirred room temperature for 3 days. Conversion was not determined by ³¹P NMR because product the signals were too broad. Then, solvents were removed on rotary evaporator and the residue was coevaporated with toluene (2× 5 ml) and once with water (5 ml). The oily residue was further purified by silica column chromatography (C18, gradient from water to ACN:water:TFA ~9:1:0.01). Fractions containing pure products were combined and evaporated to dryness to get two oils, the protected precursors for 37 and 37-Me, respectively. Each oily residue was dissolved in 1:1 aq. HCl (~10 ml) and heated at 100 °C for 2 days. Then, solvents were evaporated and each oily residue was purified on strong cation exchanger (Dowex 50, 3×10-cm bed). The column was firstly washed with water and then (i) product 37 was eluted off with 10% ag. pyridine and (ii) product 37-Me was eluted off with 5% aq. NH₃. The each eluate was evaporated to dryness *in vacuo*. The residue containing **37** was dissolved in EtOH and left to crystallize in fridge for 1 day. The polycrystalline powder was filtered off, washed with acetone (5 ml) and with Et₂O (2×5 ml) to get pure product. White polycrystalline powder 37.4H₂O (16 mg, 4 %). The oily residue containing **37-Me** was further purified on strong anion exchanger (Dowex 1, 3×5-cm bed). The column was washed with water and the product was eluted off with 20 % ag. AcOH. Solvents were evaporated in vacuo. The oily residue was loaded on strong cation exchanger (Dowex 50, 3×5-cm bed) in the **pyridine form**. After washing the column with water, product was eluted off with 5% aq. NH₃. Solvents were removed in vacuo and the pure product **37-Me** was obtained as viscous oil (40 mg, 15 %).

Characterization for compound 37:

¹**H** NMR (D₂O + *t*BuOH, pD = 3.5 + 0.4): 2.83 (H–P–C<u>H</u>₂–N, dd, ²*J*_{HP} 7.3, ³*J*_{HH} 1.8, 4H), 2.96–3.17 (**1**, m, 8H), 3.17–3.40 (**2**, m, 8H), 7.15 (<u>H</u>–P, dt, ¹*J*_{HP} 509.6, ³*J*_{HH} 1.6, 2H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 3.5 + 0.4): 43.6 (**2**), 50.6 (**1**, d, ³*J*_{CP} 6.0), 54.8 (N–<u>C</u>H₂–P, d, ¹*J*_{CP} 98.3) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 3.5 + 0.4): 21.1 (H–<u>P</u>, dt, ¹*J*_{PH} 509.6, ²*J*_{PH} 7.4) MS(+): 329 (329, [M+H]⁺), 351 (351, [M+Na]⁺), 679 (679, [2M+Na]⁺) MS(-): 327 (327, [M–H]⁻), 655 (655, [2M–H]⁻) HRMS(+) (found (*calc*)): 329.1514 (*329.1502*, C₁₀H₂₇N₄O₄P₂) TLC (conc. aq. NH₃ : EtOH = **1**:{*x*}): 0.23 {1}, 0.18 {1.5}, 0.13 {5} EA (found (*calc* M · 4H₂O)): C 29.97 (*30.00*), H 8.07 (*8.56*), N 13.63 (*13.99*)

Characterization for compound **37-Me**:

¹**H** NMR (D₂O + *t*BuOH, pD = 9.7 + 0.4): 2.75 (H–P–C<u>H</u>₂–N, dd, ²*J*_{HP} 7.8, ³*J*_{HH} 1.6, 2H), 2.71–2.77 (**4**, m, 4H), 2.91–2.97 (**1**, m, 4H), 3.03–3.10 (**2** + **3**, m, 8H), 7.04 (<u>H</u>–P, dt, ¹*J*_{HP} 507.3, ³*J*_{HH} 1.6, 1H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 9.7 + 0.4): 42.9 (N–<u>C</u>H₃), 43.7 (**2**), 43.9 (**3**), 52.0 (**1**, d, ³*J*_{CP} 6.5), 52.2 (**4**), 55.3 (N–<u>C</u>H₂–P, d, ¹*J*_{CP} 105.4) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 9.7 + 0.4): 22.8 (H–<u>P</u>, dt, ¹*J*_{PH} 507.3, ²*J*_{PH} 7.9) MS(+): 265 (265, [M+H]⁺), 529 (529, [2M+H]⁺) MS(–): 263 (263, [M–H]⁻), 527 (527, [2M–H]⁻) HRMS(+) (found (*calc*)): 265.1794 (265.1788, C₁₀H₂₆N₄O₂P) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.74 {1}, 0.68 {1.5}, 0.51 {2}, 0.32 {5}

Procedure **B**.

From 346 mg (1.0 mmol) of 1,7-Me₂cyclen·4HCl which was used in its "free-base form" after washing its CH_2Cl_2 solution with 5% aq. NaOH thrice and solvent evaporation *in vacuo*. Product **38-Me** was isolated as viscous oil (44 mg, 15 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 10.2 + 0.4): 2.40 (N–C<u>H</u>₃, s, 3H), 2.69 (2× N–C<u>H</u>₃, s, 6H), 2.80 (H–P–C<u>H</u>₂–N, dd, ²*J*_{HP} 6.2, ³*J*_{HH} 1.5, 2H), 2.75–2.80 (**4**, m, 4H), 2.89–2.94 (**1**, m, 4H), 2.96–3.03 (**2** + **3**, m, 8H), 7.11 (<u>H</u>–P, dt, ¹*J*_{HP} 506.0, ³*J*_{HH} 1.3, 1H) ¹³C{¹H} NMR (D₂O + *t*BuOH, pD = 10.2 + 0.4): 42.8 (2× N–<u>C</u>H₃), 43.3 (N–<u>C</u>H₃), 51.4 (**1**, d, ³*J*_{CP} 6.7), 51.6 (**4**), 54.8 (**3**), 55.2 (**2**), 56.8 (H–P–<u>C</u>H₂–N, d, ¹*J*_{CP} 103.0)

³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 10.2 + 0.4): 22.4 (H–<u>P</u>, dt, ${}^{1}J_{PH}$ 506.4, ${}^{2}J_{PH}$ 6.4)

MS(+): 293 (293, [M+H]⁺), 315 (315, [M+Na]⁺), 585 (585, [2M+H]⁺), 607 (607, [2M+Na]⁺), 629 (629, [2M+2Na-H]⁻)

MS(-): 291 (291, [M-H]⁻), 583 (583, [2M-H]⁻)

HRMS(+) (found (*calc*)): 293.2106 (293.2101, C₁₂H₃₀N₄O₂P)

TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.71 {5}, 0.27 {10}, 0.15 {20}, 0.09 {35}

Additional compounds

Bis[(N-methylphosphonic acid)-aminomethyl]phosphinic acid 28c.

$$\begin{array}{c} O \\ HO - P \\ OH \end{array} \begin{array}{c} H \\ N \\ OH \end{array} \begin{array}{c} O \\ H \\ P \\ OH \end{array} \begin{array}{c} O \\ H \\ OH \end{array} \begin{array}{c} O \\ H \\ P \\ OH \end{array} \begin{array}{c} O \\ H \\ OH \end{array} \begin{array}{c} O \\ H \\ P \\ OH \end{array} \begin{array}{c} O \\ H \\ OH \end{array} \begin{array}{c} O \\ H \\ P \\ OH \end{array} \begin{array}{c} O \\ H \\ OH \end{array} \begin{array}{c} O \\ H \\ P \\ OH \end{array} \begin{array}{c} O \\ H \\ OH \end{array} \end{array}{$$
 {}

In 25-ml flask, **28b** (20 mg, 0.04 mmol) was dissolved in 90% aq. AcOH and Pd/C (2 mg, 10% w/w) was added. Flask was flushed with hydrogen. Suspension was vigorously stirred at room temperature for 2 days under hydrogen atmosphere from balloon. Then, suspension was filtered through 0.22 μ m PVDF microfilter and the filtrate was concentrated *in vacuo*. The oily residue was co-evaporated with toluene (2×5 ml) to remove acetic acid and triturated with EtOH (3 ml) using ultrasound. The solid material was filtered off, washed with acetone (2 ml) and with Et₂O (2×3 ml). White powder, **28c**·3/2H₂O (13 mg, 98 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 2.0 + 0.4): 3.33 (HO–P–C<u>H</u>₂–N, d, ²J_{HP} 12.4, 4H), 3.49 (C<u>H</u>₂–P–C<u>H</u>₂, d, ²J_{HP} 9.8, 4H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 2.0 + 0.4): 46.5 (HO–P–CH₂–N, dd, ¹J_{CP} 136.7, ³J_{CP} 4.7), 48.0 (CH₂–P–CH₂, dd, ¹J_{CP} 99.1, ³J_{CP} 5.7) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 2.0 + 0.4): 8.4–10.2 (HO–<u>P</u>, m, 2P), 16.7–17.8 (CH₂–<u>P</u>–CH₂, m, 1P) MS(+): 335 (335, [M+Na]⁺) MS(-): 311 (311, [M–H]⁻), 623 (623, [2M–H]⁻), 644 (644, [2M–2H+Na]⁻) HRMS(-) (found (*calc*)): 310.9970 (*310.9968*, C₄H₁₄N₂O₈P₃) TLC (conc. aq. NH₃ : MeOH = 1:{x}): 0.74 {1}, 0.11 {2}, 0.03 {5} EA(found (*calc* M · 3/2H₂O)): C 14.05 (*14.17*), H 5.63 (*5.35*), N 7.77 (8.26)

Imino-bis(methyl-H-phosphinic acid) 25a.

$$\begin{array}{c} O & O \\ H-P & N & P-H \\ OH & OH \end{array}$$

In 100-ml flask, **25** (0.92 g, 4.0 mmol) was dissolved TFA (~30 ml) and solution was gently refluxed (oil bath, 80 °C) for 1 day. Then, the solution was concentrated *in vacuo*. The oily residue was co-evaporated with toluene (2×10 ml) to remove trifluoroacetic acid and once with water (~5 ml). The oily residue was triturated with MeOH (~20 ml) using ultrasound. The solids were filtered off, washed with acetone (10 ml) and with Et₂O (2× 10 ml). White powder, **25a**·0.25MeOH (0.55 g, 76 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 1.0 + 0.4): 3.26 (P–C<u>H</u>₂–N, dd, ²J_{HP} 10.8, ³J_{HH} 1.9, 4H), 7.21 (<u>H</u>–P, dt, ¹J_{HP} 548.5, ³J_{HH} 1.9, 2H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 1.0 + 0.4): 49.0 (P–<u>C</u>H₂–N, dd, ¹J_{CP} 85.8, ³J_{CP} 6.0) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.0 + 0.4): 12.0 (dt, ¹J_{HP} 548.6, ²J_{PH} 10.7) MS(+): 174 (174, [M+H]⁺), 347 (347, [2M+H]⁺) MS(-): 172 (172, [M–H]⁻), 345 (345, [2M–H]⁻) HRMS(+) (found (*calc*)): 174.0089 (*174.0080*, C₂H₁₀NO₄P₂), 347.0104 (*347.0086*, C₄H₁₉N₂O₈P₄) TLC (conc. aq. NH₃ : EtOH = 1:{x}): 0.75 {1}, 0.39 {5}, 0.28 {10} EA(found (*calc* M · 1/4MeOH)): C 14.95 (*14.93*), H 5.10 (*5.57*), N 7.69 (*7.74*), P 32.91 (*34.21*)

In 50-ml three-neck flask, *H*-phosphinic acid **19** (254 mg, 0.8 mmol, 1 equiv.) was dissolved in dry CH₂Cl₂ (~10 ml) under argon atmosphere. Next, dry Et₃N (555 μ l, 4.0 mmol, 5 equiv.) was added followed by Me₃SiCl (202 μ l, 1.6 mmol, 2 equiv.) and *N*,*O*-bis(trimethylsilyl)acetamide (590 μ l, 2.4 mmol, 3 equiv.). The mixture was stirred at room temperature under argon atmosphere for 1 day. The complete conversion to P(III)N intermediate was checked by ³¹P NMR and, then, *t*-butyl acrylate (130 μ l, 0.9 mmol, 1.1 equiv.) was added. The mixture was stirred under argon atmosphere for 1 day. The complete and added and, after 1 h, the mixture was concentrated *in vacuo*. The oily residue was dissolved in MeOH (~2 ml) and purified by C18 silica column chromatography (elution with gradient of pure water to ACN:water:TFA = 9:1:0.01). Fractions containing pure product were combined and evaporated to dryness. Viscous oil (160 mg, 45 %).

¹**H** NMR (CDCl₃): 0.97 (**4**, t, ${}^{3}J_{\text{HH}}$ 7.2, 3H), 1.26–1.50 (**3**, m, 1H), 1.40 ((C<u>H</u>₃)₃–C, s, 9H), 1.55–1.69 (**3**, m, 1H), 1.69–1.85 (**2** + (P–C<u>H</u>₂–CH₂–CO), m, 2H), 1.85–1.97 (P–C<u>H</u>₂–CH₂–CO, m, 1H), 2.04–2.25 (**2** + (P–CH₂–C<u>H</u>₂–CO), m, 2H), 2.25–2.41 (P–CH₂–C<u>H</u>₂–CO, m, 1H), 3.08 (**1**, ddd, ${}^{2}J_{\text{HP}}$ 10.1, ${}^{3}J_{\text{HH}}$ 8.1, ${}^{3}J_{\text{HH}}$ 4.5, 1H), 3.81–3.91 and 4.46–4.66 (N–C<u>H</u>₂–Ph, m, 4H), 7.29–7.52 (Ph, m, 10H) ¹³C{¹H} NMR (CDCl₃): 14.1 (**4**), 20.7 (**3**, d, ${}^{3}J_{\text{CP}}$ 3.2), 25.6 (**2**), 25.8 (P–CH₂–CH₂–CO, d, ${}^{1}J_{\text{CP}}$ 98.2), 27.5 (P–CH₂– CH₂–CO, d, ${}^{2}J_{\text{CP}}$ 3.5), 28.0 ((CH₃)₃–C), 56.1 (N–CH₂–Ph, d, ${}^{3}J_{\text{CP}}$ 3.5), 58.6 (**1**, d, ${}^{1}J_{\text{CP}}$ 85.9), 80.8 ((CH₃)₃–C), 129.5 (*m*-Ph), 129.9 (*p*-Ph), 130.0 (*o*-Ph), 131.0 (*i*-Ph), 171.9 (CH₂–CO–O*t*Bu, d, ${}^{3}J_{\text{CP}}$ 16.6) ³¹P NMR (CDCl₃ / 85% aq H₃PO₄): 34.8–37.5 (m) MS(+): 446 (446, [M+H]⁺), 484 (484, [M+K]⁺) MS(-): 444 (444, [M–H]⁻) HRMS(+) (found (*calc*)): 446.2465 (*446.2455*, C₂₅H₃₇NO₄P) TLC: 0.75 (*i*PrOH;conc, aq, NH₃:H₂O = 10:1:2), 0.60 (MeOH;*i*PrOH = 1:1), 0.58 (EtOH) (1-Aminobutyl)-[(2-t-butoxycarbonyl)ethyl]phosphinic acid 19b.

In 50-ml flask, phosphinic acid **19a** (147 mg, 0.33 mmol, 1 equiv.) and Pd/C (15 mg, 10% w/w) was suspended in MeOH (~10 ml) and flushed with hydrogen. Mixture was stirred at room temperature under hydrogen atmosphere from balloon for 1 day. Then, solids were filtered off using 0.22 μ m PVDF filter, solvents were evaporated *in vacuo* and once co-evaporated with Et₂O (~5 ml) to obtain pure product. Viscous oil (88 mg, 100 %).

¹**H** NMR (CDCl₃): 0.98 (**4**, t, ${}^{3}J_{\text{HH}}$ 7.2, 3H), 1.43 ((C<u>H</u>₃)₃-C, s, 9H), 1.45–1.57 (**3**, m, 1H), 1.62–1.73 (**3**, m, 1H), 1.73–1.91 (**2**, m, 2H), 1.93–2.13 (P-C<u>H</u>₂-CH₂-CO, m, 1H), 2.52 (P-CH₂-CH₂-CO, dt, ${}^{3}J_{\text{HP}}$ 10.8, ${}^{3}J_{\text{HH}}$ 8.0), 3.54–3.67 (**1**, m, 1H), 8.28 (<u>H</u>₃N⁺-CH₂-P, bs, 3H) ¹³C{¹H} NMR (CDCl₃): 13.7 (**4**), 19.8 (**3**, d, ${}^{3}J_{\text{CP}}$ 8.9), 23.0 (P-<u>C</u>H₂-CH₂-CO, ${}^{1}J_{\text{CP}}$ 99.8), 27.3 (P-CH₂-<u>C</u>H₂-CO, d, ${}^{2}J_{\text{CP}}$ 3.9), 28.0 ((<u>C</u>H₃)₃-C), 30.7 (**2**), 49.8 (**1**, d, ${}^{1}J_{\text{CP}}$ 90.4), 81.1 ((CH₃)₃-<u>C</u>) ³¹P NMR (CDCl₃ / 85% aq H₃PO₄): 38.9–41.2 (m) MS(+): 266 (266, [M+H]⁺), 531 (531, [2M+H]⁺), 796 (796, [3M+H]⁺) MS(-): 264 (264, [M-H]⁻), 529 (529, [M-H]⁻) HRMS(+) (found (*calc*)): 266.1543 (*266.1516*, C₁₁H₂₅NO₄P), 531.2969 (*531.2959*, C₂₂H₄₉N₂O₈P₂) TLC: 0.60 (*i*PrOH:conc. aq. NH₃:H₂O = 10:1:2), 0.23 (MeOH:*i*PrOH = 1:1), 0.18 (EtOH) (N,N-Dibenzyl)-aminomethylphosphonic acid A.

In 4-ml vial, *N*,*N*-dibenzyl-amine (192 µl, 1.0 mmol, 1 equiv.), paraformaldehyde (60 mg, 2.0 mmol, 2 equiv.) and H_3PO_3 (90 mg, 1.1 mmol, 1.1 equiv.) were mixed with glacial AcOH (2 ml). The suspension was heated at 40 °C for 36 h followed by heating at 60 °C for 2 days. Conversion was determined by ³¹P NMR. Then, solvents were removed on rotary evaporator and the oily residue was purified on strong cation exchanger (Dowex 50, 3×10-cm bed). The column was washed with water and product was eluted off with 10% aq. pyridine. The pyridine eluate was evaporated to dryness. The solid residue was triturated in acetone using ultrasound, filtered off, washed with acetone (5 ml) and with Et₂O (2×5 ml) to get pure product. White powder **A**·4/3H₂O (76 mg, 24 %).¹⁰

(N,N-Dicyclohexyl)-aminomethylphosphonic acid **B**.

In 4-ml vial, *N*,*N*-dicyclohexyl-amine (201 µl, 181 mg, 1.0 mmol, 1 equiv.), paraformaldehyde (60 mg, 2.0 mmol, 2 equiv.), and H₃PO₃ (90 mg, 1.1 mmol, 1.1 equiv.) were mixed with glacial AcOH (2 ml). The suspension was heated at 40 °C for 2 days, and to 60 °C for 3 days during which time conversion was followed by ³¹P NMR. Then, solvents were removed on rotary evaporator and the oily residue was purified on strong cation exchanger (Dowex 50, 3×10 cm bed). The column was washed with water and product was eluted off with 10% aq. pyridine. The pyridine eluate was evaporated to dryness. The solid residue was triturated in acetone using ultrasound, filtered off, washed with acetone (5 ml) and with Et₂O (2× 5 ml) to get pure product. Off-white powder **B**·H₂O (75 mg, 27 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 5.4 + 0.4): 1.12–1.25 (**4**, m, 2H), 1.27–1.53 (**3**, m, 4H), 1.50–1.64 (**2**, m, 4H), 1.63–1.72 (**4**, m, 2H), 1.84–1.96 (**3**, m, 4H), 2.00–2.12 (**2**, m, 4H), 3.34 (P–C<u>H</u>₂–N, d, ²*J*_{HP} 13.5, 2H), 3.51–3.61 (**1**, m, 2H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 5.4 + 0.4): 25.1 (**4**), 25.1 + 25.4 (**3**), 27.9 + 29.0 (**2**), 45.7 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 135.9), 64.8 (**1**, d, ³*J*_{CP} 3.4) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 5.4 + 0.4): 9.9 (t, ²*J*_{PH} 13.4) MS(+): 314 (314, [M+Na]⁺), 605 (605, [2M+Na]⁺) MS(-): 290 (290, [M–H]⁻), 581 (581, [2M–H]⁻) HRMS(+) (found (*calc*)): 276.1728 (276.7123, C₁₃H₂₇NO₃P) TLC (*conc.* aq. NH₃ : EtOH = 1:{x}): 0.74 {1}, 0.61 {1.5} EA (found (*calc* M · H₂O)): C 53.14 (53.60), H 8.68 (9.00), N 4.62 (4.81), P 9.68 (10.63)

¹⁰EA (found (*calc* M · 4/3H₂O)): C 57.05 (57.41), H 6.05 (6.58), N 4.50 (4.46), P 9.87 (9.92)

¹¹ W. Szczepaniak and K. Kuczynski, *Phosporus Sulfur Relat. Elem.* 1979, 7, 333–337.

[(N,N-Dibenzyl)-aminomethyl] (phenyl) phosphinic acid C.

In 4-ml vial, *N*,*N*-dibenzyl-amine (106 μ l, 0.55 mmol, 1.1 equiv.), paraformaldehyde (30 mg, 1.0 mmol, 2 equiv.), and phenyl-*H*-phosphinic acid (71 mg, 0.5 mmol, 1 equiv.) were mixed with glacial AcOH (2 ml). The suspension was heated at 40 °C for 1 day and conversion was followed by ³¹P NMR. Then, solvents were removed on rotary evaporator. The oily residue was dissolved in EtOH and purified on strong cation exchanger (Dowex 50, 3×10-cm bed). Column was washed with aq. EtOH (1:1, ~100 ml) and product was eluted off with 10% pyridine in water : EtOH (~3:1) mixture. Pyridine eluate was evaporated to dryness and the oily residue was dissolved in water (~2 ml) and left to crystallize in fridge. After standing for 3 days, crystalline product was isolated (7 mg, 4 %). It was identified as a adduct of **C** with phenylphosphonic acid. A single crystal was taken from the bulk.

¹**H** NMR (DMSO-*d*₆): 2.77 (P–C<u>H</u>₂–N, d, ²*J*_{HP} 10.0, 2H), 3.69 (N–C<u>H</u>₂–Ph, s, 4H), 7.06–7.15 (*o*-Ph, m, 4H), 7.15–7.26 (*m*-Ph + *p*-Ph, m, 6H), 7.40–7.54 (**2'** + **4'** + **2**, m, 5H), 7.54–7.63 (**3** + **4**, m, 3H), 7.63–7.73 (**3'**, m, 2H) ¹³C{¹**H**} NMR (DMSO-*d*₆): 52.3 (P–<u>C</u>H₂–N, d, ¹*J*_{CP} 115.6), 58.5 (N–<u>C</u>H₂–Ph, d, ³*J*_{CP} 8.1), 126.9 (*p*-Ph), 128.0 (**4'**, d, ⁴*J*_{CP} 2.4), 128.1 (*o*-Ph), 128.2 (**4**), 128.6 (*m*-Ph), 130.5 (**3'**, d, ³*J*_{CP} 9.7), 130.8 (**2'**, d, ²*J*_{CP} 3.1), 131.3 (**3**, d, ³*J*_{CP} 9.4), 131.5 (**2'**, d, ²*J*_{CP} 2.9), 133.7 (**1'**, d, ¹*J*_{CP} 125.6), 134.7 (**1**, d, ¹*J*_{CP} 73.4), 138.2 (*i*-Ph) ³¹**P** NMR (DMSO-*d*₆ / 85% H₃PO₄): 13.8 (HO–<u>P</u>–OH, m, 1P), 33.2 (C–<u>P</u>–C, m, 1P) MS(+): 352 (352, [M+H]⁺), 374 (374, [M+Na]⁺)

MS(-): 350 (350, [M-H]⁻)

HRMS(+) (found (*calc*)): 352.1467 (*352.1461*, C₂₁H₂₃NO₂P)

TLC: 0.84 (*i*PrOH:conc. aq. NH₃:water = 10:1:2), 0.52 (EtOH), 0.72 (MeOH:*i*PrOH = 1:1)

(Phthalimido-methyl)[(N,N-dibenzyl)-aminomethyl]phosphinic acid **D**.

In 4-ml vial, *N*,*N*-dibenzylamine (106 μ l, 0.55 mmol, 1.1 equiv.), paraformaldehyde (30 mg, 1.0 mmol, 2 equiv.), and (phtalimidomethyl)phosphinic acid (113 mg, 0.5 mmol, 1 equiv.) were mixed with glacial AcOH (2 ml). The suspension was heated up to 40 °C for 1 day and conversion was determined by ³¹P NMR. Then, solvents were removed on rotary evaporator and water (~10 ml) was added to oily residue. Heterogenous mixture was triturated using ultrasound. Solid was filtered off and washed with water (2 ml), with Et₂O (2× 5 ml) and dried in oven (100 °C / 15 min). White powder, **D**·7/3H₂O (119 mg, 50 %).

A single crystal was prepared by slow cooling of hot aqueous solution of **D**.

¹**H** NMR (DMSO-*d*₆): 2.81 (P–C<u>H</u>₂–N–Bn, d, ²*J*_{HP} 8.3, 2H), 3.78 (PhtN–C<u>H</u>₂–P, d, ²*J*_{HP} 7.6, 2H), 3.92 (N–C<u>H</u>₂–Ph, s, 4H), 7.22–7.52 (Ph, m, 10H), 7.78–7.93 (Phth, m, 4H) ¹³C{¹**H**} NMR (DMSO-*d*₆): 37.2 (PhtN–<u>C</u>H₂–P, d, ¹*J*_{CP} 96.4), 51.4 (P–<u>C</u>H₂–N–Bn, d, ¹*J*_{CP} 100.8), 57.9 (N–<u>C</u>H₂–Ph, d, ³*J*_{CP} 6.4), 123.1 (2), 127.8 (*p*-Ph), 128.4 (*m*-Ph), 129.8 (*o*-Ph), 131.6 (1), 134.5 (3), 135.8 (*i*-Ph), 167.2 (N–<u>C</u>=O) ³¹**P** NMR (DMSO-*d*₆): 30.3–31.2 (m) MS(+): 457 (457, [M+Na]⁺) MS(-): 433 (433, [M–H]⁻) HRMS(+) (found (*calc*)): 435.1477 (*435.1468*, C₂₄H₂₄N₂O₄P) TLC: 0.72 (*i*PrOH:conc. aq. NH₃:water = 10:1:2), 0.45 (EtOH), 0.60 (MeOH:*i*PrOH = 1:1) EA(found (*calc* M · 7/3H₂O)): C 60.48 (*60.50*), H 5.18 (*5.85*), N 5.75 (*5.88*), P 7.53 (*6.50*)

In 25-ml round-bottom flask, *N*,*N*-dibenzyl-amine (212 µl, 1.1 mmol, 1.1 equiv.), paraformaldehyde (60 mg, 2.0 mmol, 2 equiv.), and (*N*,*N*-dicyclohexyl)-aminomethyl-*H*-phosphinic acid **5** (260 mg, 1.0 mmol, 1 equiv.) were mixed with glacial AcOH (10 ml). The suspension was heated at 40 °C for 2 days and conversion was followed by ³¹P NMR. Then, solvents were removed on rotary evaporator. The oily residue was dissolved aq. MeOH (~75 %, ~3 ml) and purified on flash silica column chromatography (C18, gradient from pure water to ACN:water:TFA = 9:1:0.01). Fractions containing pure product were combined and concentrated *in vacuo* to yield viscous oil of **E**·TFA (230 mg, 40 %).

¹**H** NMR (CDCl₃): 1.02–1.17 (**4**, m, 2H), 1.17–1.30 (**3**, m, 4H), 1.34–1.50 (**2**, m, 4H), 1.56–1.69 (**4**, m, 2H), 1.74–1.90 (**3**, m, 4H), 1.91–2.05 (**2**, m, 4H), 2.94 (P–C<u>H</u>₂–N–Bn, d, ²J_{HP} 10.8, 2H), 3.11 (Cy–N–C<u>H</u>₂–P, d, ²J_{HP} 8.7, 2H), 3.20–3.30 (**1**, m, 2H), 4.23 (N–C<u>H</u>₂–Ph, s, 4H), 7.29–7.41 (*m*-Ph + *p*-Ph, m, 6H), 7.41–7.52 (*o*-Ph, m, 4H) ¹³C{¹H} NMR (CDCl₃): 24.7 (**4**), 25.1 (**3**), 27.9 (**2**), 63.9 (**1**, d, ³J_{CP} 2.5), 47.0 (Cy–N–<u>C</u>H₂–P, d, ¹J_{CP} 86.2), 50.2 (P– <u>C</u>H₂–N–Bn, d, ¹J_{CP} 105.1), 58.5 (N–<u>C</u>H₂–Ph, d, ³J_{CP} 5.7), 128.7 (*m*-Ph), 128.8 (*p*-Ph), 131.0 (*o*-Ph), 132.8 (*i*-Ph) ³¹P NMR (CDCl₃): 16.3–19.0 (m) **MS**(+): 469 (469, [M+H]⁺), 491 (491, [M+Na]⁺) **MS**(-): 467 (467, [M–H]⁻) **HRMS**(+) (**found** (*calc*)): 429.2993 (*469.2984*, C₂₈H₄₂N₂O₂P), 937.5868 (*937.5884*, C₅₆H₈₃N₄O₄P₂) **TLC:** 0.86 (*i*PrOH:conc. aq. NH₃:water = 10:1:2), 0.55 (EtOH), 0.56 (MeOH:*i*PrOH = 1:1) [(N-Benzyl)-aminomethyl](phthalimido-methyl)phosphinic acid D1.

In 25-ml flask, phosphinic acid **D** (240 mg, 0.5 mmol, 1 equiv.) and Pd/C (25 mg, 10% w/w) was suspended in MeOH (~10 ml) and the flask was flushed with hydrogen. The mixture was heated at 50 °C under hydrogen atmosphere from balloon for 1 day. Then, solution was filtered through filtration paper. The filtered-off solid was suspended/dissolved in boiling water (~20 ml) and suspension was filtered. The filtrate was evaporated to dryness *in vacuo*. The solid residue was suspended in acetone (~20 ml) using ultrasound. Pure product was filtered off, washed with acetone (~10 ml), Et₂O (2× 5 ml) and dried in oven (30 min / 90 °C). White powder, **D1**·4/3H₂O (98 mg, 53 %).

¹**H** NMR (CD₃OD + a drop of conc. aq. HCl): 3.55 (P–C<u>H</u>₂–N–Bn, d, ²*J*_{HP} 10.1, 2H), 4.24 (P–C<u>H</u>₂–N–Pht, d, ²*J*_{HP} 9.0, 2H), 4.40 (N–C<u>H</u>₂–Ph, s, 2H), 7.44–7.54 (*m*-Ph + *p*-Ph, m, 3H), 7.56–7.63 (*o*-Ph), 7.83–7.90 (**3**, m, 2H), 7.90–7.96 (**2**, m, 2H)

¹³C{¹H} NMR (CD₃OD + a drop of conc. aq. HCl): 38.1 (P–<u>C</u>H₂–N–Pht, d, ¹ J_{CP} 105.4), 45.7 (P–<u>C</u>H₂–N–Bn, d, ¹ J_{CP} 95.5), 54.3 (N–<u>C</u>H₂–Ph, d, ³ J_{CP} 6.5), 124.5 (2), 130.3 (*m*-Ph), 130.9 (*p*-Ph), 131.5 (*o*-Ph), 131.8 (*i*-Ph), 133.2 (1), 135.8 (3), 169.2 (N–<u>C</u>=O)

³¹**P NMR** (CD₃OD + a drop of conc. aq. HCl / 85% aq H₃PO₄): 30.9 (p, ${}^{2}J_{PH}$ 8.9, ${}^{2}J_{PH}$ 9.9)

 $MS(+): 345 (345, [M+H]^+), 689 (689, [2M+H]^+)$

MS(-): 343 (343, [M-H]⁻), 687 (687, [2M-H]⁻)

HRMS(+) (found (calc)): 345.1003 (345.0999, C₁₇H₁₈N₂O₄P), 689.1914 (689.1925, C₃₄H₃₅N₄O₈P₂)

TLC: 0.57 (*i*PrOH:conc. aq. NH₃:H₂O = 10:1:2), 0.29 (MeOH:*i*PrOH = 1:1), 0.29 (EtOH)

EA(found (calc M · 4/3H₂O)): C 55.78 (55.44), H 4.82 (5.38), N 7.55 (7.61), P 8.61 (8.41)

(Aminomethyl)(phthalimido-methyl)phosphinic acid D2.

In 25-ml flask, phosphinic acid **D** (240 mg, 0.5 mmol, 1 equiv.) and Pd/C (25 mg, 10% w/w) was suspended in DMF : AcOH ~5:1 (~10 ml) and the flask was flushed with hydrogen. The mixture was heated at 50 °C under hydrogen atmosphere from balloon for 2 days. Then, the suspension was filtered through 0.22 μ m PVDF filter. An excess of Et₂O (~25 ml) was added to the filtrate, and precipitate was filtered off and washed with Et₂O (3×5 ml). The powder was dried on air and then triturated in boiling MeOH (~10 ml). Part of the product was filtered off and filtrate was left to crystallize in fridge for 3 h. Then, precipitate was filtered off, washed with cold MeOH (~3 ml) and Et₂O (2×5 ml). Combined powdered product was dried in oven (15 min, 75 °C). White powder (55 mg, 43 %).

¹**H** NMR (D₂O + *t*BuOH, pD = 5.8 + 0.4): 3.17 (P–C<u>H</u>₂–NH₂, d, ²J_{HP} 10.1, 2H), 3.98 (P–C<u>H</u>₂–N–Pht, d, ²J_{HP} 8.8, 2H), 7.81–7.86 (**3**, m, 2H), 7.86–7.91 (**2**, m, 2H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 5.8 + 0.4): 37.8 (P–<u>C</u>H₂–N–Pht, d, ¹J_{CP} 103.7), 38.7 (P–<u>C</u>H₂–NH₂, d, ¹J_{CP} 93.7), 124.3 (**2**), 131.9 (**1**), 135.5 (**3**), 170.5 (N–<u>C</u>=O) ³¹**P** NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 5.8 + 0.4): 24.8 (p, ²J_{PH} 9.8, ²J_{PH} 8.9) MS(+): 255 (255, [M+H]⁺), 509 (509, [2M+H]⁺), 531 (531, [2M+Na]⁺) MS(-): 253 (253, [M–H]⁻) HRMS(+) (found (*calc*)): 255.0524 (255.0529, C₁₀H₁₂N₂O₄P), 509.0967 (509.0986, C₂₀H₂₃N₄O₈P₂) TLC: 0.43 (*i*PrOH:conc. aq. NH₃:H₂O = 10:1:2), 0.16 (MeOH:*i*PrOH = 1:1), 0.19 (EtOH) (Aminomethyl)[(N,N-dibenzyl)-aminomethyl]phosphinic acid D3.

In 25-ml flask, phosphinic acid **D** (240 mg, 0.5 mmol, 1 equiv.) was dissolved in anhydrous EtOH (~15 ml) and N₂H₄·H₂O (37 mg, 0.8 mmol, 1.5 equiv.) was added. Solution was heated at 80 °C for 1 day. Then, the solution was cooled to room temperature and some precipitate was filtered off using 0.22 μ m PVDF filter. The filtrate was evaporated to dryness *in vacuo*. The oily residue was suspended in CHCl₃ (~20 ml) and some more precipitate was filtered off using 0.22 μ m PVDF filter. The filtrate was filtered off using 0.22 μ m PVDF filter. The filtrate was extracted by aq. HCl (1:1 dilution, 3×5 ml) and the aminophosphinic acid was transferred into the aqueous phase. The solvents were removed *in vacuo* and the residue was once co-evaporated with MeOH (~5 ml). The oily residue was dissolved in MeOH (~5 ml) and product was precipitated by addition of Et₂O (~20 ml). Pure product was filtered off and washed with Et₂O (2×5 ml). Off-white hygroscopic powder **D3·3/2HCl·7/2H₂O** (105 mg, 50 %)).

¹**H** NMR (D₂O + *t*BuOH, pD = 1.2 + 0.4): 2.88 (P–C<u>H</u>₂–NH₂, d, ²J_{HP} 9.9, 2H), 3.38 (P–C<u>H</u>₂–N–Bn, d, ²J_{HP} 8.9, 2H), 4.57 (N–C<u>H</u>₂–Ph, s, 4H), 7.46–7.62 (Ph, m, 10H) ¹³C{¹**H**} NMR (D₂O + *t*BuOH, pD = 1.2 + 0.4): 38.9 (P–CH₂–NH₂, d, ¹J_{CP} 101.1), 50.5 (P–CH₂–N–Bn, d, ¹J_{CP} 91.5), 60.1 (N–CH₂–Ph, d, ³J_{CP} 3.6), 129.4 (*i*-Ph), 130.1 (*m*-Ph), 131.1 (*p*-Ph), 132.1 (*o*-Ph) ³¹P NMR (D₂O + *t*BuOH / 85% aq H₃PO₄, pD = 1.2 + 0.4): 18.6 (p, ²J_{PH} 9.7, ²J_{PH} 8.9) MS(+): 305 (305, [M+H]⁺), 609 (609, [2M+H]⁺) MS(-): 303 (303, [M–H]⁻), 607 (607, [2M–H]⁻) HRMS(+) (found (*calc*)): 305.1419 (*305.1413*, C₁₆H₂₂N₂O₂P), 609.2748 (*609.2754*, C₃₂H₄₃N₄O₄P₂) TLC: 0.60 (*i*PrOH:conc. aq. NH₃:H₂O = 10:1:2), 0.17 (MeOH:*i*PrOH = 1:1), 0.15 (EtOH)

EA(found (*calc* **M** · 3/2HCl · 7/2H₂**O**)): C 45.39 (45.53), H 5.89 (7.05), N 6.92 (6.64), P 7.14 (7.34), Cl 12.17 (12.60)

4. X-ray Diffaction Experimental and Data

The diffraction data were collected at (*i*) 120 K: [H₃(N,N''-dibenzyl)-diethylene-triamine]Cl₃, **1**, **12**, **13**·0.25H₂O, **17**·2H₂O, BnNHCH₂PO₂H₂, **C**·PhPO₃H₂, **D**) or (*ii*) 150 K (all other structures). Data acquisition was carried out on (*i*) Nonius KappaCCD diffractometer equipped with Cryostream Cooler (Oxford Cryosystem) and with Bruker APEX-II CCD detector using monochromatized Mo- $K\alpha$ radiation (λ 0.71073 Å): **2**, **5**, **10**, **11**, (AdNH₃)⁺(**18**)⁻·H₂O, **22**·H₂O, Bn₂NCH₂PO₂H₂, **C**·PhPO₃H₂) or (*ii*) Bruker D8 VENTURE Kappa Duo PHOTON100 diffractometer with IµS microfocus sealed tube: **12**, **13**·0.25H₂O, **17**·2H₂O, **D**) using Cu- $K\alpha$ (λ 1.54178 Å) radiation or [H₃(N,N''-dibenzyl)diethylenetriamine]Cl₃, **1**, **4**·2H₂O, **8**·H₂O, **20**·MeOH, **25** using Mo- $K\alpha$ (λ 0.71073 Å) radiation

Data were analysed using the SAINT (Bruker AXS Inc.) software package. Data were corrected for absorption effects using the multi-scan method (SADABS). All structures were solved by direct methods (SHELXT2014)¹² and refined using full-matrix least-squares techniques (SHELXL2014).¹³ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were found in the difference density map. However, the appropriate numbers of hydrogen atoms bound to carbon atoms were fixed in theoretical positions using $U_{eq}(H) = 1.2 U_{eq}(C)$ to keep a number of parameters low, and only hydrogen atoms bound to heteroatoms (N, O, P) were fully refined.

In the crystal structures of **1**, **2**, **5**, **10**, **11**, **12**, **25**, BnNHCH₂PO₂H₂ and **D**, only aminophosphinate molecules are present. In the crystal structures of **4**·2H₂O, **8**·H₂O, **13**·0.25H₂O, **17**·2H₂O and **22**·H₂O, also water molecules of crystallization are present. In the case of **13**·0.25H₂O, the occupancy of water molecule was constrained to 0.25 to obtain reliable thermal factor. In the case of **17**·2H₂O, a hard-to-be-modelled disorder of water molecules was found. Therefore, appropriate solvate contribution was squeezed using PLATON.¹⁴ In addition in this case, a planarsymmetry forced disorder of the phosphinate group with phosphorus atom disordered in two close positions sharing oxygen atoms which are positioned in the symmetry plane was found. The compound **18** was crystallized in form of adamantylammonium salt monohydrate, the compound **20** crystallizes as a MeOH solvate, and the compound **C** was isolated as an adduct with phenylphosphonic acid, **C**·PhPO₃H₂. In the case of adamantylammonium salt of **18** and Bn₂NCH₂PO₂H₂, two formula units form the structurally independent unit. For [H₃(*N*,*N*′′-dibenzyl)diethylenetriamine]Cl₃ and **17**·2H₂O, symmetric molecules were found and it leads to half-formula as the structurally independent part. For all compounds except the above-mentioned ones, one formula unit forms the independent part of the crystal structures. Except structure of **17**·2H₂O discussed above, no disorder was found in any other structure.

Table S5 contains selected experimental crystallographic parameters for the structures reported in this paper. Data for the structures have been deposited the Cambridge Crystallographic Data Centre (for CCDC reference numbers see also Table S5). Parameters of intramolecular and intermolecular hydrogen bonds are outlined in Tables S6 and S7. Molecular structures of the compounds those solid-state structures were determined by X-ray diffraction are shown together with other characterizations of the compounds (see above).

¹² a) G. M. Sheldrick, *SHELXT2014/5*. *Program for Crystal Structure Solution from Diffraction Data*, University of Göttingen, Göttingen, 2014; (*b*) G. M. Sheldrick, *Acta Crystallogr. Sect. A.*, **2008**, *A64*, 112–122.

 ¹³ (a) C. B. Hübschle, G. M. Sheldrick and B. Dittrich, *ShelXle: a Qt graphical user interface for SHELXL*, University of Göttingen, Göttingen, 2014. (b) C. B. Hübschle, G. M. Sheldrick and B. Dittrich, *J. Appl. Crystallogr.*, 2011, 44, 1281–1284. (c) G. M. Sheldrick, *SHELXL-2014/7. Program for Crystal Structure Refinement from Diffraction Data*, University of Göttingen, Göttingen, 2017; (d) G. M. Sheldrick, *Acta Crystallogr. Sect. C*, 2015, C71, 3–8.

¹⁴ (a) A. L. Spek, *PLATON A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, The Netherlands, 2019. (b) A. L. Spek, *Acta Crystallogr.*, 2009, **D65**, 148–155.

	$[H_3(N,N''-dibenzyl)-$	_			_	011.0	10		10	12.0.2511.0
Parameter	diethylene-triamine]Cl ₃	1	2	4 ·2H ₂ O	5	8 ⋅H ₂ O	10	11	12	12 13 ·0.25H ₂ O
Formula	$C_{18}H_{28}Cl_3N_3$	C ₁₅ H ₁₈ NO ₂ P	$C_3H_{10}NO_2P$	C ₇ H ₂₂ NO ₄ P	C ₁₃ H ₂₆ NO ₂ P	C ₅ H ₁₄ NO ₄ P	$C_4H_{10}NO_4P$	C ₁₀ H ₁₄ NO ₄ P	C ₅ H ₁₀ NO ₆ P	C ₆ H _{12.5} NO _{4.25} P
$M_{ m r}$	392.78	275.27	123.09	215.22	259.32	183.14	167.10	243.19	211.11	197.64
Habit	plate	prism	prism	prism	prism	plate	prism	prism	prism	bar
Colour	colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless
Crystal system	monoclinic	monoclinic	orthorhombic	monoclinic	triclinic	orthorhombic	orthorhombic	triclinic	triclinic	triclinic
Space group	<i>C</i> 2	$P2_{1}/n$	$Pna2_1$	C2/c	<i>P</i> -1	Pbca	$P2_{1}2_{1}2_{1}$	<i>P</i> -1	<i>P</i> -1	$P2_{1}/n$
<i>a</i> , Å	39.208(3)	10.2763(4)	9.7130(3)	13.3640(6)	8.5485(2)	10.3557(4)	7.9050(4)	5.6610(2)	5.1523(6)	5.5885(3)
b, Å	4.9186(3)	9.1700(3)	10.9592(3)	8.5851(4)	8.7247(2)	12.4193(5)	7.9314(4)	8.5501(3)	7.4078(9)	19.127(1)
c, Å	5.1714(4)	15.3112(6)	5.5558(2)	20.140(1)	10.3439(2)	13.5892(4)	11.8753(5)	12.0035(4)	11.850(1)	8.3332(5)
α, °	90	90	90	90	71.418(1)	90	90	78.854(1)	101.004(5)	90
β, °	90.465(3)	103.229(1)	90	91.384(2)	68.689(1)	90	90	79.171(1)	95.811(5)	103.684(3)
γ, °	90	90	90	90	81.280(1)	90	90	78.139(1)	103.446(5)	90
$U, Å^3$	997.26(12)	1404.54(9)	591.40(3)	2310.1(2)	680.70(3)	1747.7(1)	744.55(6)	551.19(3)	426.75(9)	865.48(9)
Ζ	2	4	4	8	2	8	4	2	2	4
$D_{\rm calc}$, g cm ⁻³	1.308	1.302	1.382	1.238	1.265	1.392	1.491	1.465	1.643	1.517

Table S5. Experimental parameters of the reported crystal structures and their CCDC numbers.

CCDC number	1984986	1984991	1984993	1984990	1985003	1984994	1984996	1984997	1984992	1985000
wR'(all)	0.0920	0.0817	0.0521	0.0767	0.0846	0.0879	0.0554	0.0759	0.0798	0.1090
$wR(I \ge 2\sigma(I))$	0.0911	0.0798	0.0520	0.0746	0.0821	0.0839	0.0552	0.0739	0.0821	0.1067
R'(all)	0.0399	0.0338	0.0183	0.0329	0.0353	0.0402	0.0200	0.0336	0.0345	0.0467
$R(I \ge 2\sigma(I))$	0.0376	0.0310	0.0181	0.0288	0.0312	0.0338	0.0197	0.0304	0.0309	0.0431
Obsd. refl. $(I \ge 2\sigma(I))$	2036	2966	1329	2425	2803	1750	1690	2333	1527	1545
Unique refl.	2107	3210	1343	2663	3105	2003	1717	2526	1679	1684
μ , mm ⁻¹	0.465	0.193	0.362	0.226	0.194	0.286	0.329	0.248	2.968	2.723

Parameter	17 ·2H ₂ O	$(\mathrm{AdNH}_3)^+(18)^-\cdot\mathrm{H}_2\mathrm{O}$	20 ·MeOH	22 ·H ₂ O	25	BnNHCH ₂ PO ₂ H ₂	C·PhPO ₃ H ₂	D
Formula	$C_{21}H_{24}N_3O_8P$	$C_{26}H_{39}N_2O_3P$	C ₂₃ H ₂₈ NO ₃ P	$C_9H_{17}NO_5P_2$	$C_6H_{17}NO_4P_2$	$C_8H_{12}NO_2P$	C ₂₇ H ₂₉ NO ₅ P ₂	$C_{24}H_{23}N_2O_4P$
$M_{ m r}$	477.40	458.56	397.43	281.17	229.14	185.16	509.45	434.41
Habit	prism	bar	prism	plate	prism	prism	prism	prism
Colour	colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless
Crystal system	monoclinic	triclinic	triclinic	monoclinic	monoclinic	orthorhombic	monoclinic	triclinic
Space group	$P2_{1}/m$	<i>P</i> -1	<i>P</i> -1	$P2_1$	$P2_{1}/c$	$Pca2_1$	$P2_{1}/c$	<i>P</i> -1
<i>a</i> , Å	5.6105(2)	6.4395(2)	9.7954(5)	7.0189(3)	8.6777(3)	10.4097(4)	9.4746(4)	9.9559(5)
b, Å	21.6543(9)	17.5869(5)	9.9645(5)	5.7569(2)	11.9197(3)	6.3878(3)	11.3717(5)	10.8993(5)
<i>c</i> , Å	8.9960(4)	22.0784(6)	11.1729(6)	15.9662(8)	10.7504(3)	27.1688(12)	23.1551(10)	11.2372(5)
α, °	90	89.251(2)	73.496(2)	90	90	90	90	110.848(1)
β, °	94.695(2)	89.612(1)	82.075(2)	98.694(2)	104.459(1)	90	91.990(1)	92.553(1)
γ, °	90	83.824(1)	87.525(2)	90	90	90	90	110.000(1)
U, Å ³	1089.27(8)	2485.6(1)	1035.62(9)	637.73(5)	1076.75(6)	1806.59(14)	2493.28(19)	1051.45(9)
Ζ	2	4	2	2	4	8	4	2
$D_{\rm calc},{ m g~cm}^{-3}$	1.456	1.225	1.275	1.464	1.414	1.361	1.357	1.372
μ , mm ⁻¹	1.604	0.140	0.156	0.350	0.390	0.263	0.213	1.448

CCDC number	1984995	1984988	1984987	1984999	1985002	1984998	1984989	1985001
wR'(all)	0.1064	0.1164	0.0902	0.0761	0.0670	0.1090	0.0840	0.0834
$wR(I > 2\sigma(I))$	0.1050	0.1032	0.0857	0.0734	0.0666	0.1078	0.0787	0.0810
R'(all)	0.0451	0.0858	0.0415	0.0375	0.0243	0.0433	0.0420	0.0373
$R(I \ge 2\sigma(I))$	0.0428	0.0506	0.0345	0.0308	0.0238	0.0415	0.0337	0.0333
Obsd. refl. $(I \ge 2\sigma(I))$	1822	7572	4190	2630	2387	3301	4966	3629
Unique refl.	1961	10831	4763	2908	2457	3454	5741	3984

Compound	Distan	ce, Å	Angle, °	
2	N3…O11	3.156(2)	N3-H31…O11	97(2)
4 ·2H ₂ O	N3…O11	3.205(1)	N3-H31…O11	109(1)
5	N3…O11	3.045(1)	N3-H31…O11	115(1)
8 ⋅H ₂ O	N3…O11	2.946(2)	N3-H31…O11	101(1)
10	N3…O52	2.761(2)	N3-H31…O52	94(1)
11	N3…O52	2.732(1)	N3-H31…O52	101(1)
	N3…O11	2.823(2)	N3-H31…O11	120(2)
12	N3…O52	2.729(2)	N3-H31…O52	104(2)
	N3…O72	2.698(2)	N3-H31…O72	110(2)
13 ·0.25H ₂ O	N3…O412	2.698(3)	N3-H31O412	113(2)
20 ·MeOH	N3…O11	2.852(1)	N3-H31…O11	111(1)
22 ·H ₂ O	N3…O21	2.998(3)	N3-H31…O21	96(2)
25	N3…O22	3.181(1)	N3-H31…O22	111(1)
DENILCH DO H	N3A…O11A	2.862(5)	N3A-H31A…O11A	79(4)
$\mathbf{D}\mathbf{H}\mathbf{V}\mathbf{H}\mathbf{C}\mathbf{H}_{2}\mathbf{F}\mathbf{O}_{2}\mathbf{H}_{2}$	N3X…O11X	2.875(5)	N3X-H31X…O11X	87(3)
C·PhPO ₃ H ₂	N3…O12	3.184(2)	N3-H31…O12	95(1)
D	N3…O11	2.799(1)	N3-H31…O11	117(1)

Table S6. Parameters of intramolecular hydrogen bonds found in the solid state structures of the prepared compounds.

Compound	D-H	<i>d</i> (D – H), Å	<i>d</i> (H···A), Å	<dha, th="" °<=""><th><i>d</i>(D···A), Å</th><th>A [symmetry code]</th></dha,>	<i>d</i> (D ···A), Å	A [symmetry code]
1	N3-H31	0.922	1.737	172.91	2.654	$011 \left[-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}\right]$
2	N3-H31	0.886	1.788	166.13	2.657	011 $[-x, -y, z^{-1/2}]$
	N3-H31	0.886	1.842	168.12	2.714	011 [-x+1, -v+1, -z+1]
	$O1W-H11W^{a}$	0.863	1 899	172 29	2 757	012
4.201.0	O1W = H11W	0.805	1.077	171.26	2.757	
4 ·2H ₂ O		0.820	1.900	1/1.50	2.780	O12 [-x+1, y, -2+1/2]
	O2W-H21W ^a	0.855	1.963	160.72	2.785	OIW"
	O2W–H22W ^a	0.863	2.062	154.48	2.864	$O1W^{a} \left[-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}\right]$
5	N3-H31	0.883	1.926	152.68	2.740	O11 [- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1]
8 ∙H ₂ O	N3-H31	0.911	1.819	160.06	2.693	O11 [- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1]
	O1W-H11W ^a	0.847	1.938	161.27	2.754	O12
	O1W-H12W ^a	0.841	1.957	162.62	2.770	O11 [x ⁻¹ / ₂ , -y ⁺¹ / ₂ , -z ⁺¹]
10	N3-H31	0.895	1.765	169.89	2.650	O11 $[-x+1, y+\frac{1}{2}, -z+\frac{1}{2}]$
	O51–H511	0.859	1.661	171.75	2.514	O12 [<i>x</i> ⁻¹ / ₂ , - <i>y</i> +1 ¹ / ₂ , - <i>z</i> +1]
11	N3-H31	0.887	1.861	158.02	2.704	O11 [<i>x</i> –1, <i>y</i> , <i>z</i>]
11	O51–H511	0.865	1.671	170.74	2.529	O12 [<i>x</i> -1, <i>y</i> +1, <i>z</i>]
12	O51–H511	0.906	1.606	166.40	2.496	O12 [- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1]
12	O71–H711	0.847	1.685	161.14	2.502	O11 [− <i>x</i> +1, − <i>y</i> +1, − <i>z</i>]
	N3-H31	0.916	1.959	143.68	2.751	O11 $[x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}]$
13 ·0.25H ₂ O	O411–H411	1.056	1.406	176.38	2.461	O12 [$x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$]
	O1W-H11W ^a	0.922	1.883	152.77	2.736	012
17 ·2H ₂ O	N3-H31	0.966	1.678	163.56	2.619	O11 [<i>x</i> –1, <i>y</i> , <i>z</i>]
	N30A-H30A	0.872	2.037	170.52	2.901	$O1W^{a}[x+1, y, z]$
	N30A-H30B	0.931	1.879	164.08	2.786	O12A [- <i>x</i> , - <i>y</i> +1, - <i>z</i>]
	N30A-H30C	1.014	1.797	170.76	2.802	O11A
$(\mathrm{AdNH}_3)^+(18)^-\cdot\mathrm{H}_2\mathrm{O}$	N30X-H30X	0.881	2.045	170.76	2.918	$O2W^{a}[x+1, y, z]$
	N30X-H30Y	0.951	1.845	170.14	2.788	O12X [- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1]
	N30X-H30Z	0.953	1.839	166.13	2.773	011X
	O1W–H11W ^a	0.849	1.951	166.88	2.784	O11A

Table S7. Parameters of intermolecular hydrogen bonds found in the solid state structures of the prepared compounds.

	O1W-H12W ^a	0.850	1.993	172.67	2.838	O12A [- <i>x</i> , - <i>y</i> +1, - <i>z</i>]
	O2W-H21W ^a	0.894	2.095	162.78	2.961	011X
	O2W-H22W ^a	0.844	1.974	172.64	2.813	O12X [- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1]
20 .MoOH	N3-H31	0.910	1.871	157.75	2.736	O11 [- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1]
20 MeOn	O1M–H1M ^b	0.835	1.806	176.62	2.640	012
	011–H110	1.032	1.379	175.07	2.409	O21 [<i>x</i> +1, <i>y</i> +1, <i>z</i>]
22 11 0	N3-H31	0.819	1.901	165.31	2.701	O12 [<i>x</i> , <i>y</i> –1, <i>z</i>]
22·H ₂ O	O1W–H11W ^a	0.804	2.069	159.17	2.835	O22 [$-x, y+\frac{1}{2}, -z+1$]
	O1W-H12W ^a	0.793	1.986	170.23	2.771	O22 [<i>x</i> +1, <i>y</i> , <i>z</i>]
25	011–H110	0.952	1.491	176.64	2.442	O21 [x , $-y+1/2$, $z+\frac{1}{2}$]
25	N3-H31	0.868	1.881	161.80	2.719	O22 [- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1]
	N3A-H31A	1.050	1.704	160.58	2.717	011X
BnNHCHaPOaHa	N3A-H32A	1.042	1.769	152.87	2.738	O12X [<i>x</i> , <i>y</i> +1, <i>z</i>]
	N3X-H31X	0.868	1.865	175.62	2.731	O11A
	N3X–H32X	0.920	1.889	152.69	2.739	O12A [<i>x</i> , <i>y</i> –1, <i>z</i>]
	N3-H31	0.929	1.725	174.65	2.652	O23 $[-x+1, y-\frac{1}{2}, -z+\frac{1}{2}]$
$\mathbf{C} \cdot \mathbf{PhPO}_3\mathbf{H}_2$	O21-H21O	0.914	1.564	174.99	2.476	011
	O22–H22O	0.896	1.620	177.98	2.516	O12 $[-x+1, y+\frac{1}{2}, -z+\frac{1}{2}]$
D	N3-H31	0.912	1.977	140.20	2.740	O11 [- <i>x</i> +1, - <i>y</i> , - <i>z</i> +1]

 ^{a}W – atom belonging to a water molecule. ^{b}M – atom belonging to a methanol molecule.