1	Supporting information
2	
3	Green and facile synthesis of water-soluble carbon dots from ethanolic shallot extract
4	for chromium ions sensing in milk, fruit juices, and wastewater samples
5	
6	Chinawooth Sakaew ¹ , Phitchan Sricharoen ^{2,3} , Nunticha Limchoowong ⁴ *, Prawit
7	Nuengmatcha ⁵ , Chunyapuk Kukusamude ³ , Supalak Kongsri ³ and Saksit Chanthai ^{1**}
8	
9	¹ Materials Chemistry Research Center, Department of Chemistry and Center of Excellence
10	for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002,
11	Thailand
12	² Preclinical Science Center, Faculty of Dentistry, Bangkokthonburi University, 16/10 Thawi
13	Watthana, Bangkok 10170, Thailand
14	³ Nuclear Research and Development Division, Thailand Institute of Nuclear Technology
15	(Public Organization), 9/9 Moo 7, Tambon Saimoon, Ongkharak, Nakhon Nayok 26120,
16	Thailand
17	⁴ Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110,
18	Thailand
19	⁵ Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and
20	Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280,
21	Thailand
22	
23	
24	Corresponding author, e-mail address: nuntichoo@gmail.com* (N. Limchoowong),
25	sakcha2@kku.ac.th** (S. Chanthai)

29 Scheme S1. Extraction and hydrothermal step for CDs synthesis from shallot.

Scheme S2. Quenching mechanisms of Cr(VI) and Fe(III) at pH 4 and pH 7.

34 Fig. S1. FTIR spectra of shallot extract and its CDs.

38 Fig. S2. EDX pattern of CDs.

- 39
- 40 Fig. S3. SEM image of CDs.

43 Fig. S4. Relative quantum efficiency of CDs and quinine sulfate.

44

47 Fig. S5. (A) Effect of incubation time on fluorescence intensity of CDs for hydrothermal
48 step. (B) Effect of incubation temperature on fluorescence intensity of CDs for hydrothermal

49 step.

Fig. S6. (A) Effect of various concentrations of Cr(VI) quenching of CDs. (B) The Stern Volmer plot for Cr(VI) quenching effect.

68 Fig. S7. Effect of incubation time (conversion reaction) of Cr(III) to Cr(VI) by oxidation with 69 H_2O_2

- _ .

Analytical parameter	Analytical feature
Linearity (µM)	20-100
Linear equation $((0,0)$ intersection) for	
20 - 100 (µM)	y = 2.2346x
100-1000 (µM)	y = 1.0928x
Correlation coefficient (R ²) for	
20-100 (µM)	0.9981
100-1000 (µM)	0.4725
Limit of detection (LOD), (μ M), ($n = 11$)	3.5
Limit of quantification (LOQ), (μ M), (n = 11)	11.7
Relative standard deviation (RSD), (%) for	
Intra-day analysis $(n = 3x3)$	2.78
Inter-day analysis $(n = 5x3)$	5.29

Table S1. Analytical characteristics of the proposed method