One-step synthesis of hydrophobic clinoptilolite modified by silanization for

degradation of crystal violet dye in aqueous solution

Jian Jiao, Jihong Sun^{*}, Raza Ullah, Shiyang Bai^{*} and Chengwei Zhai

Beijing Key Laboratory for Green Catalysis and Separation, Department of

Chemistry and Chemical Engineering, Beijing University of Technology, Beijing,

100124, China

Electronic Supporting Information

Fig. S1 XRD pattern of natural CP, used as seed.

Fig. S2 Arrhenius plots of induction time for (a) synthetic pure CP, (b) CP-0.4M, and (c) CP-0.4D.

Fig. S3 Arrhenius plots of growth periods for (a) synthetic pure CP, (b) CP-0.4M, and (c) CP-0.4D.

Fig. S4 WCAs illustrations of (a) CP-150-5, (b) CP-150-0.4M5, (c) CP-150-0.6M5, (d) CP-150-3, (e) CP-150-0.4D3, and (f) CP-150-0.6D3.

Fig. S5 TG (A)and DSC (B) profiles of as-synthesized samples: (a) CP-150-3, (b) CP-150-0.4M5, and (c) CP-150-0.6D3.

Fig. S6 XRD patterns of (a) ZnO/natural CP, (b) 0.8-ZnO/natural CP, (c) ZnO/CP-150-3, (d) ZnO/CP-150-0.4M5 and (e) ZnO/CP-150-0.4D3.

Fig. S7 Band gap energy of ZnO/CP-150-3 determined using Tauc relation.

Fig. S8 Rate constant fitting curve of different catalyst supports: (A) ZnO/natural CP, (B) ZnO/CP-150-3, (C) ZnO/CP-150-0.4M5 and (D) ZnO/CP-150-0.4D3.