Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting information for

Anodic SnO₂ Porous Nanostructures with Rich Grain Boundaries for

Efficient CO₂ Electroreduction to Formate

Ruizhen Ma,^b Yan-Li Chen,^a Yongli Shen,^b Heng Wang,^a Wei Zhang,^{a,*} Su-Seng Pang,^c Jianfeng

Huang,d,* Yu Han,e Yunfeng Zhao,b,*

^a State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied

Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau,

China.

^b Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy

Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin

University of Technology, 391 West Binshui Road, Xiqing District, Tianjin 300384, China

^c Faculty of Information, Macau University of Science and Technology, Taipa, Macau, China.

d Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of

Chemistry and Chemical Engineering, Chongging University, Chongging 400044, China

^e Advanced Membranes and Porous Materials Center, King Abdullah University of Science and

Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

Correspondence

E-mail: wzhang@must.edu.mo, jianfeng.huang@cqu.edu.cn, yfzhao@tjut.edu.cn;

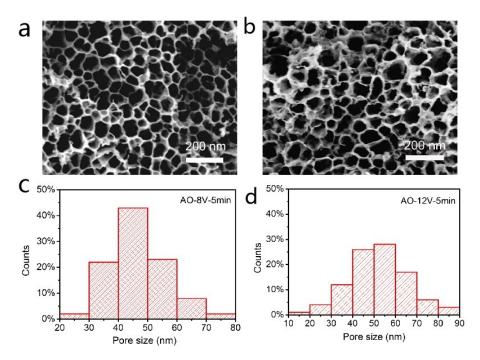


Fig. S1 (a, b) SEM images taken from the surface of SnO_2 - AO_8 and SnO_2 - AO_{12} , and (c, d) their corresponding pore size distribution graphs

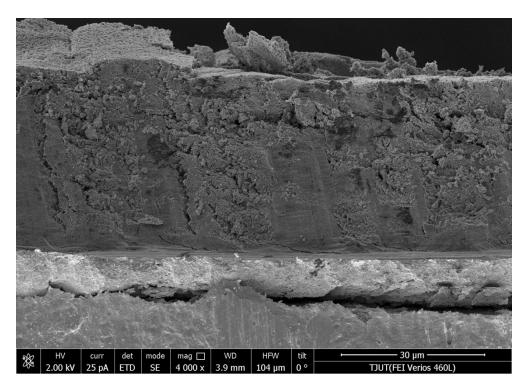


Fig. S2 SEM image taken from the cross-section of SnO_2 - AO_{10} .

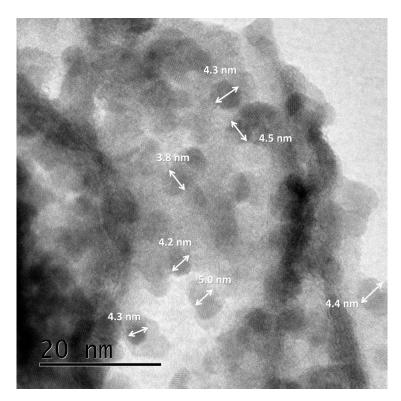


Fig. S3 High-resolution TEM image of SnO₂-AO₁₀ nanostructures.

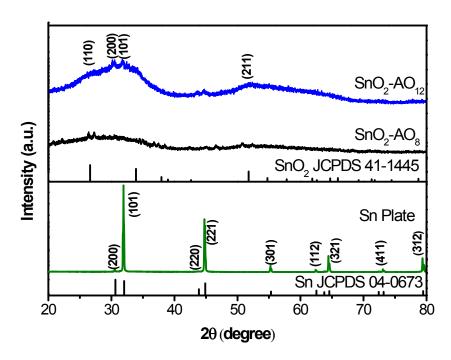
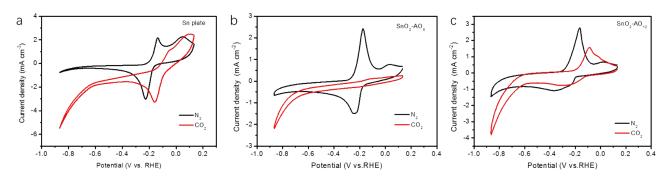



Fig. S4 XRD patterns of Sn foil, $SnO_2\text{-}AO_8$ and $SnO_2\text{-}AO_{12}$ nanostructures.

Fig. S5 Polarization curves obtained on (a) Sn plate, (b) SnO_2 - AO_8 , and (c) SnO_2 - AO_{12} in N_2 and CO_2 saturated 0.5 M KHCO₃ solution with a scan rate of 50 mV s⁻¹.

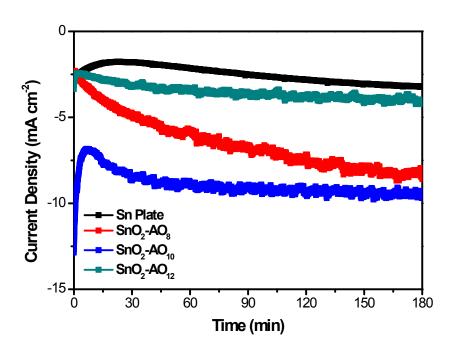
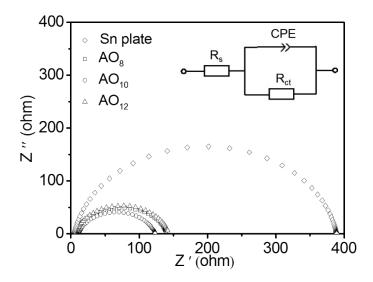



Fig. S6 Current density curves of samples recorded at -0.8 V vs. RHE in 0.5 M KHCO₃ with the CO_2 flow rate of 2 mL min⁻¹.

Fig. S7 Electrochemical Impedance Spectroscopy (EIS) analysis SnO_2 - AO_8 , SnO_2 - AO_{10} and SnO_2 - AO_{12} electrode in CO_2 saturated 0.5 M KHCO₃ solution. The inset is an equivalent circuit diagram for fitting the Nyquist plot. Note: the diameter of the semicircle for SnO_2 - AO_{10} is smaller than that of both SnO_2 - AO_8 and SnO_2 - AO_{12} , signifying that SnO_2 - AO_{10} exhibits the smallest charge-transfer resistance (R_{ct}). It is well accepted that the crystallinity of an electroactive material governs its electrical conductivity, which in turn affects significantly its electrocatalytic performance. Consequently, the lower activity of the other two SnO_2 nanostructures (i.e., SnO_2 - AO_8 and SnO_2 - AO_{12}) might be due to their poorer crystallinity (cf. **Fig.3d & Fig. S4**) which limits the electrical conductivity.

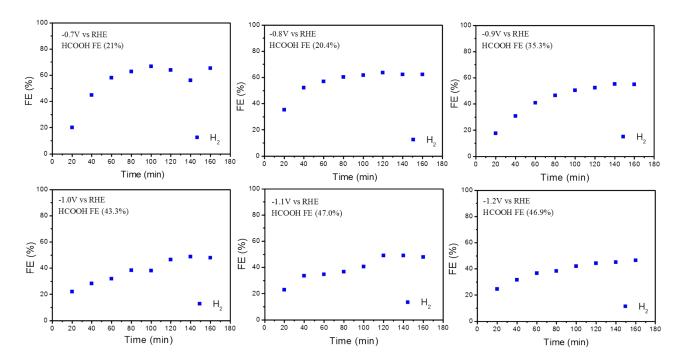


Fig. S8 H_2 , CO, and HCOOH FE as a function of electrolysis time on Sn plate electrode at the potential from -0.7 to -1.2 V vs. RHE.

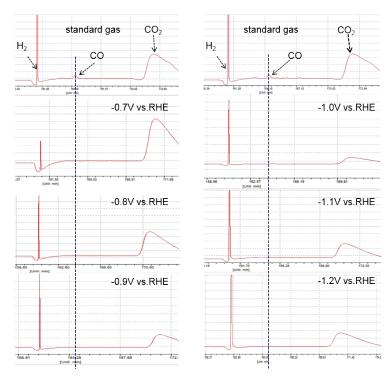


Fig. S9 GC Spectra of products detected on Sn plate at different potentials.

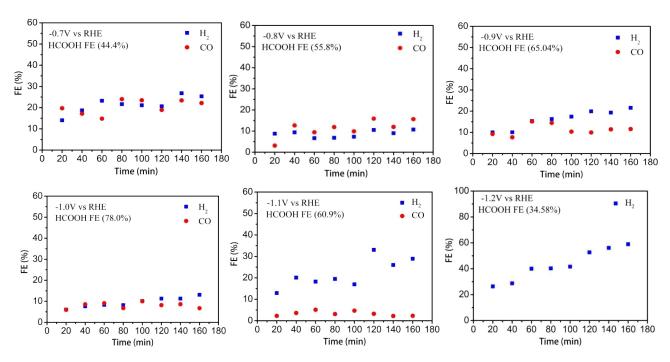


Fig. S10 H_2 , CO, and HCOOH FE as a function of electrolysis time on SnO_2 - AO_8 electrode at the potential from -0.7 to -1.2 V vs. RHE.

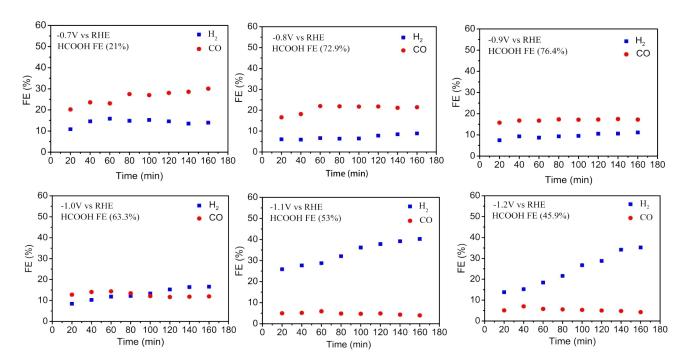


Fig. S11 H_2 , CO, and HCOOH FE as a function of electrolysis time on SnO_2 - AO_{10} electrode at the potential from -0.7 to -1.2 V vs. RHE.

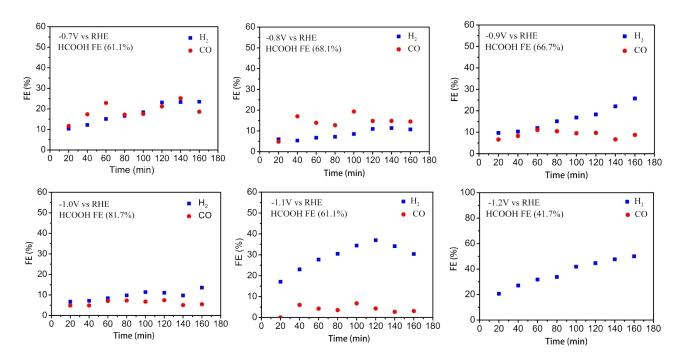
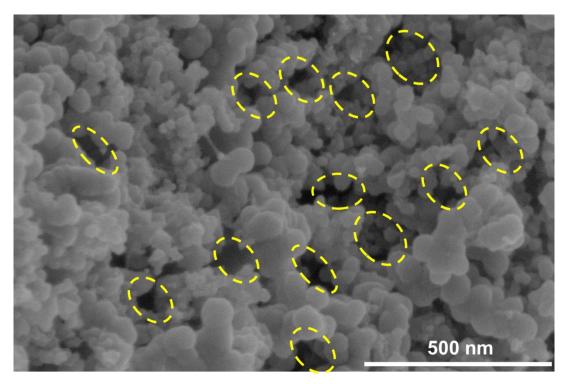
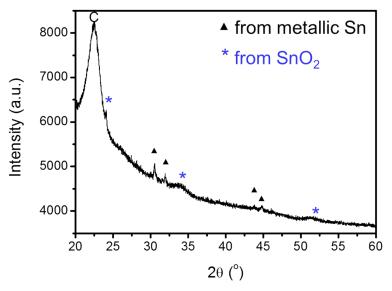




Fig. S12 H_2 , CO, and HCOOH FE as a function of electrolysis time on SnO_2 - AO_{12} electrode at the potential from -0.7 to -1.2 V vs. RHE.

Fig. S13 SEM image of SnO_2 - AO_{10} after CO_2RR at -0.8 V vs. RHE for 180 min. The yellow ellipses indicate the presence of macropores.

Fig. S14 XRD patterns of SnO_2 - AO_{10} after CO_2RR under -0.8 V (vs RHE) for 180 min. Signals of both metallic Sn and SnO_2 were detected. The weak intensity is due to the scarcity of the sample that was collected after reaction. The strong peak at 22° arises from the carbon black.

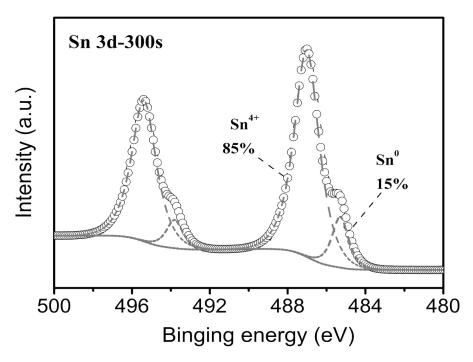


Fig. S15 Depth XPS analysis (sputtering rate: 0.72 nm/s, sputtering time: 300 s) of SnO_2 - AO_{10} after CO_2RR at -0.8 V vs. RHE for 180 min.

Table S1. Comparison of working potentials and FEs for CO, HCOOH and C1 of Sn-based CO₂RR from the literature and this work.

Sn-based Catalysts	Electrolyte	Potential ^a (V vs. RHE)	FE max (%)			D. C
			СО	НСООН	СО+НСООН	Reference
SnO ₂ @Carbon	0.1M NaHCO ₃	-1.19	NA	96.3	NA	1
SnO ₂ -50	0.5M KHCO ₃	-0.56V vs.SHE	NA	56	NA	2
Graphene confined Sn quantum sheets	0.1M NaHCO ₃	-1.16	NA	89	NA	3
Sn-pNW	0.1M KHCO ₃	-0.8	14	78	92	4
Core/Shell Cu/SnO ₂ Structure	0.5M KHCO ₃	-0.7	93	NA	NA	5
Urchin-like SnO ₂	0.5M KHCO ₃	-1.4	NA	62	NA	6
Mesoporous -SnO ₂	0.1M KHCO ₃	-0.8	38	~40	~80	7
SnO/C	0.5M KHCO ₃	-0.66	37	NA	NA	8
Tin oxide NP	0.5 mol dm ⁻³	-0.4	NA	70	NA	9
porous $Sn_{0.29}In_{0.71}$	0.1M NaHCO ₃	-1.0	~13	59.2	~72	10
Sn/SnO ₂ porous hollow fiber	0.1M KHCO ₃	-0.95	~10	82.1	93	11
SnO_x/AgO_x	0.1 M KHCO 3	-0.8	~60	21.1	95	12
CuSn-NW Air	0.5M KHCO ₃	-1.0	NA	90.2	NA	13
CuSn-NW Air	0.5M KHCO ₃	-0.9	NA	81.2	NA	13
SnO ₂ -AO ₈	$0.5MKHCO_3$	-0.8	15.7	55.8	71.5	This work
SnO ₂ -AO ₈	$0.5MKHCO_3$	-1.0	6	78	84	This work
SnO ₂ -AO ₁₀	$0.5MKHCO_3$	-0.8	22	72.9	~95	This work
SnO ₂ -AO ₁₀	$0.5MKHCO_3$	-0.9	15	76.4	91.4	This work
SnO ₂ -AO ₁₂	0.5MKHCO ₃	-0.8	15.6	68.1	83.7	This work
SnO ₂ -AO ₁₂	$0.5MKHCO_3$	-1.0	5	81.7	87	This work

Note: The potentials were converted to RHE scale based on the equation, $E(RHE) = E(Ag/AgCl) + 0.0591 \times pH + 0.210 \text{ V}$ or $E(RHE) = E(SCE) + 0.0591 \times pH + 0.242 \text{ V}$ by assuming the pH of CO_2 -saturated 0.5 M and 0.1 M NaHCO₃ or KHCO₃ is 7.2 and 6.8, respectively. ^a the best value reported.

Reference in Table S1:

- 1. Zhang, S.; Kang, P.; Meyer, T.J. Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. *J. Am. Chem. Soc.* **2014**, 136, 1734-1737.
- 2. Fu, Y.; Li, Y.; Zhang, X.; Liu, Y.; Zhou, X.; Qiao, J. Electrochemical coreduction to formic acid on crystalline snonanosphere catalyst with high selectivity and stability. *Chinese. J. Catal.* **2016**,

- 37, 1081-1088.
- 3. Lei, F.; Liu, W.; Sun, Y.; Xu, J.; Liu, K.; Liang, L. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. *Nat. Commun.* **2016**, 7, 12697.
- 4. Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q. Reduced SnO₂ porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO₂-into-HCOOH conversion. *Angew. Chem. Int. Ed.* **2017**, 56, 3645-3649.
- 5. Li, Q.; Fu, J.; Zhu, W.; Chen, Z. Tuning Sn-Catalysis for Electrochemical Reduction of CO₂ to CO via the Core/Shell Cu/SnO₂ Structure. *J. Am. Chem. Soc.* **2017**, 139, 4290-4293.
- 6. Liu, Y.; Fan, M.; Zhang, X.; Zhang, Q.; Guay, D.; Qiao, J. Design and engineering of urchin-like nanostructured SnO₂ catalysts via controlled facial hydrothermal synthesis for efficient electroreduction of CO₂. *Electrochim. Acta.* **2017**, 248, 123-132.
- 7. Ge, H.; Gu, Z.; Han, P.; Shen, H. Mesoporous tin oxide for electrocatalytic CO₂ reduction. *J. Colloid. Interf. Sci.* **2018**, 531, 564-569.
- 8. Gu, J.; Héroguel, F.; Luterbacher, J.; Hu, X. Densely packed, ultra-small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO₂ reduction. *Angew. Chem. Int. Ed.* **2018**, 57, 2943-2947.
- 9. Dutta, A.; Kuzume, A.; Kaliginedi, V. Probing the chemical state of tin oxide NP catalysts during CO₂ electroreduction: A complementary operando approach. *Nano Energy* **2018**, 53, 828-840.
- 10. Hyenki, K.; Hyunju, L.; Taeho, L. Facile fabrication of porous Sn-based catalysts for electrochemical CO₂, reduction to HCOOH and syngas. *J. Ind. Eng. Chem.* **2018**, 66, 248-253.
- 11. Hu, H.; Gui, L.; Zhou, W.; Sun, J. Partially reduced Sn/SnO₂ porous hollow fiber: A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction. *Electrochim. Acta.* **2018**, 285, 70-77.
- 12. Choi, Y.W.; Scholten, F.; Sinev I.; Cuenya, B.R. Enhanced Stability and CO/Formate Selectivity of Plasma-Treated SnO_x/AgO_x Catalysts during CO₂ Electroreduction. *J. Am. Chem. Soc.* **2019**, 141, 5261-5266.
- 13. Wang, J.; Ji, Y.; Shao, Q.; Yin, R.; Guo, J.; Li, Y.; Huang, X. Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO₂. *Nano Energy* **2019**, 59, 138-145.