Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020 ELECTRONIC SUPPLEMENTARY MATERIALS

Synthesis, Structure, and Antitumor Activity of 2,9-Disubstituted Perhydro 2,3a,7b,9,10a,14b-Hexaazadibenzotetracenes

Elena B. Rakhimova, Victor Yu. Kirsanov, Elena V. Tret'yakova, Leonard M. Khalilov, Askhat G. Ibragimov, Lilya U. Dzhemileva, Vladimir A. D'yakonov, Usein M. Dzhemilev

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russian Federation

Table of contents

NMR and MS spectra of compounds 2-16	2–31
X-ray data of compound 9	32-34

(3b*R**,7a*R**,10b*R**,14a*R**)-2,9-Dipropyl-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-

hexaazadibenzo[*fg*,*op*]tetracene (2)

hexaazadibenzo[*fg*,*op*]tetracene (3)

(3b*R**,7a*R**,10b*R**,14a*R**)-2,9-Dibutyl-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-

hexaazadibenzo[fg,op]tetracene (4)

 $(3bR^*, 7aR^*, 10bR^*, 14aR^*)$ -2,9-Di-*tert*-butyl-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-hexaazadibenzo[*fg*,*op*]tetracene (5)

Figure 4. NMR and MS spectra of compound 5.

(3b*R*^{*},7a*R*^{*},10b*R*^{*},14a*R*^{*})-2,9-Dicyclopropyl-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14bhexaazadibenzo[*fg*,*op*]tetracene (**6**)

 $(3bR^*, 7aR^*, 10bR^*, 14aR^*)$ -2,9-Dicyclopenthyl-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14bhexaazadibenzo[*fg*,*op*]tetracene (7)

 $(3bR^*, 7aR^*, 10bR^*, 14aR^*)$ -2,9-Dicyclohexyl-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-hexaazadibenzo[*fg*,*op*]tetracene (**8**)

 $(3bR^*, 7aR^*, 10bR^*, 14aR^*)$ -2,9-Dicycloheptyl-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-hexaazadibenzo[*fg*,*op*]tetracene (**9**)

 $(3bR^*, 7aR^*, 10bR^*, 14aR^*)$ -2,9-Dicyclooctyl-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-hexaazadibenzo[*fg*,*op*]tetracene (**10**)

Figure 9. NMR and MS spectra of compound 10.

31.502 28.384 27.434 27.222 26.633 26.633 25.663 24.818 24.818 24.482

 $(3bR^*, 7aR^*, 10bR^*, 14aR^*)$ -2,9-Dibicyclo[2.2.1]hept-2-yl-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-hexaazadibenzo[*fg*,*op*]tetracene (11)

 $(3bR^*, 7aR^*, 10bR^*, 14aR^*)$ -2,9-Di(1-adamantyl)-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-hexaazadibenzo[*fg*,*op*]tetracene (**12**)

Figure 11. NMR and MS spectra of compound 12.

 $(3bR^*, 7aR^*, 10bR^*, 14aR^*)$ -2,9-Di(2-adamantyl)-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-hexaazadibenzo[*fg*,*op*]tetracene (**13**)

Figure 12. NMR and MS spectra of compound 13.

 $(3bR^*, 7aR^*, 10bR^*, 14aR^*)$ -2,9-Bis(1-hydroxy-3-adamantyl)-octadecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-hexaazadibenzo[*fg*,*op*]tetracene (14)

Figure 13. NMR and MS spectra of compound 14.

Dimethyl *N'*,*N''*-(3b*R*^{*},7a*R*^{*},10b*R*^{*},14a*R*^{*})-tetradecahydro-1*H*,8*H*-2,3a,7b,9,10a,14b-hexaazadibenzo[*fg*,*op*]tetracene-2,9-diylbis(13'-isopropyl-4',10'-dimethyl-23',24'-dioxohexadecahydro-8',12'-ethenonaphtho[2,1-*e*]isoindole-4'-carboxylate) (**15**)

Figure 14. NMR and MS spectra of compound 15.

Dimethyl N',N''-[(3b $R^*,7aR^*,10bR^*,14aR^*$)-tetradecahydro-1H,8H-2,3a,7b,9,10a,14b-hexaazadibenzo[fg,op]tetracene-2,9-diylbis(ethane-N',N''-diyl)]bis(13'-isopropyl-4',10'-dimethyl-23',24'-dioxohexadecahydro-8',12'-ethenonaphtho[2,1-e]isoindole-4'-carboxylate) (16)

X-ray data of compound 9

Figure 16. The independent part of the unit cell of compound 9. Non-hydrogen atoms are represented by thermal vibration ellipsoids (p = 30%)

Figure 17. Packing of molecules in 9, view along *a* axis.

Table 1. Crystal data and structure refinement for compound 9.

CCDC	1973770
Empirical formula	C ₃₄ H ₅₈ Cl ₆ N ₆
Formula weight	763.56
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	10.1228(10)
b/Å	10.5481(11)
c/Å	19.5768(19)
$\alpha/^{\circ}$	78.370(9)
β/°	85.218(8)
γ/°	72.376(9)
Volume/Å ³	1950.8(4)
Ζ	2
$\rho_{calc}g/cm^3$	1.300
μ/mm ⁻¹	0.473
F(000)	812.0
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	4.224 to 58.498
Index ranges	$-12 \le h \le 12, -12 \le k \le 13, -24 \le 1 \le 23$
Reflections collected	16427
Independent reflections	8968 [R _{int} = 0.0824]
Goodness-of-fit on F ²	0.872
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0751, wR_2 = 0.1721$
Final R indexes [all data]	$R_1 = 0.2600, wR_2 = 0.2723$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.30

Table 2. Bond Lengths for compound 9, Å.

Bond		Bond	
Cl(6)–C(16)	1.727(5)	C(10B)–C(11)	1.528(6)
Cl(4)-C(16)	1.757(5)	C(14A)–C(14)	1.532(6)
Cl(5)-C(16)	1.709(6)	C(3B)–C(7A)	1.505(6)
Cl(2)–C(15)	1.737(6)	C(3B)–C(4)	1.538(6)
N(10A)–C(10)	1.468(5)	C(1")–C(7")	1.531(7)
N(10A)–C(14D)	1.475(5)	C(1")–C(2")	1.531(7)
N(10A)C(10B)	1.478(5)	C(7A)–C(7)	1.524(6)
N(9)–C(10)	1.449(5)	C(7)–C(6)	1.532(7)
N(9)–C(8)	1.464(5)	C(1')–C(7')	1.527(7)
N(9)–C(1")	1.471(5)	C(1')–C(2')	1.530(7)
Cl(3)-C(15)	1.733(6)	C(11)–C(12)	1.513(6)
N(3A)–C(14E)	1.473(5)	C(14)–C(13)	1.528(6)
N(3A)–C(3B)	1.469(5)	C(7')–C(6')	1.501(7)
N(3A)–C(3)	1.472(5)	C(13)–C(12)	1.514(6)
Cl(1)–C(15)	1.731(6)	C(7")–C(6")	1.529(8)
N(14B)–C(14E)	1.441(5)	C(6)–C(5)	1.514(7)
N(14B)C(14A)	1.481(5)	C(4)–C(5)	1.524(6)
N(14B)–C(1)	1.437(5)	C(2')–C(3')	1.519(7)

N(7B)-C(14D)	1.454(5)	C(6")–C(5")	1.471(10)
N(7B)–C(8)	1.445(5)	C(2")–C(3")	1.483(8)
N(7B)–C(7A)	1.487(6)	C(3")–C(4")	1.508(9)
N(2)-C(3)	1.448(6)	C(3')–C(4')	1.481(8)
N(2)-C(1)	1.457(6)	C(4")–C(5")	1.452(10)
N(2)–C(1')	1.469(5)	C(6')–C(5')	1.502(10)
C(14E)–C(14D)	1.498(6)	C(5')–C(4')	1.488(9)
C(10B)–C(14A)	1.517(6)		

Table 3.Bond Angles for compound 9, $^\circ$

Angle		Angle	
Cl(6)–Cl(4)	109.4(3)	C(7A)–C(3B)–C(4)	109.5(4)
Cl(5)–C(16)–Cl(6)	112.1(3)	N(7B)–C(8)–N(9)	111.5(3)
Cl(5)-C(16)-Cl(4)	110.3(3)	N(2)-C(3)-N(3A)	112.0(3)
C(10) - N(10A) - C(14D)	107.4(3)	N(9)–C(1")–C(7")	108.2(4)
C(10)–N(10A)–C(10B)	111.2(3)	N(9)–C(1")–C(2")	115.9(4)
C(14D) - N(10A) - C(10B)	109.6(3)	C(2")–C(1")–C(7")	114.9(5)
C(10)-N(9)-C(8)	108.6(4)	N(7B)–C(7A)–C(3B)	109.3(4)
C(10)–N(9)–C(1")	112.4(3)	N(7B)–C(7A)–C(7)	110.7(4)
C(8)–N(9)–C(1")	114.1(3)	C(3B)–C(7A)–C(7)	111.6(4)
C(3B)-N(3A)-C(14E)	109.1(3)	N(14B)-C(1)-N(2)	111.0(4)
C(3B)–N(3A)–C(3)	110.8(3)	C(7A)–C(7)–C(6)	111.9(4)
C(3)–N(3A)–C(14E)	107.9(4)	N(2)-C(1')-C(7')	109.7(4)
C(14E)-N(14B)-C(14A)	111.3(3)	N(2)-C(1')-C(2')	115.4(4)
C(1)–N(14B)–C(14E)	108.1(3)	C(7')-C(1')-C(2')	111.6(5)
C(1)–N(14B)–C(14A)	116.8(4)	C(12)-C(11)-C(10B)	111.6(4)
C(14D)-N(7B)-C(7A)	112.0(4)	C(13)-C(14)-C(14A)	112.2(4)
C(8)–N(7B)–C(14D)	108.3(3)	C(6')–C(7')–C(1')	115.6(5)
C(8)–N(7B)–C(7A)	116.1(4)	C(12)-C(13)-C(14)	111.0(4)
C(3)-N(2)-C(1)	109.4(4)	C(6")-C(7")-C(1")	116.2(5)
C(3)–N(2)–C(1')	112.5(3)	C(11)-C(12)-C(13)	110.4(4)
C(1)-N(2)-C(1')	115.3(4)	C(5)–C(6)–C(7)	110.5(5)
N(3A)-C(14E)-C(14D)	112.7(4)	C(5)–C(4)–C(3B)	111.8(4)
N(14B)–C(14E)–N(3A)	111.9(4)	C(3')-C(2')-C(1')	117.1(5)
N(14B)-C(14E)-C(14D)	110.5(3)	C(6)-C(5)-C(4)	110.7(4)
N(9)–C(10)–N(10A)	110.1(3)	C(5")-C(6")-C(7")	116.0(7)
N(10A)-C(14D)-C(14E)	112.4(3)	C(3")-C(2")-C(1")	116.4(6)
N(7B)-C(14D)-N(10A)	112.1(4)	Cl(3)-C(15)-Cl(2)	110.1(3)
N(7B)C(14D)C(14E)	110.4(3)	Cl(1)-C(15)-Cl(2)	111.1(4)
N(10A)-C(10B)-C(14A)	110.3(3)	Cl(1)-C(15)-Cl(3)	110.2(3)
N(10A)-C(10B)-C(11)	112.2(4)	C(2")-C(3")-C(4")	116.9(6)
C(14A)–C(10B)–C(11)	111.1(4)	C(4')–C(3')–C(2')	114.2(5)
N(14B)-C(14A)-C(10B)	108.1(3)	C(5")-C(4")-C(3")	121.1(7)
N(14B)–C(14A)–C(14)	110.3(4)	C(7')–C(6')–C(5')	115.1(7)
C(10B)–C(14A)–C(14)	110.7(3)	C(4')–C(5')–C(6')	119.9(6)
N(3A)–C(3B)–C(7A)	111.2(3)	C(3')–C(4')–C(5')	118.6(6)
N(3A)–C(3B)–C(4)	111.0(4)	C(4")-C(5")-C(6")	120.9(7)