Supporting Information

A Transition-Metal-Free, Oxidative Coupling of Arylmethylamines with Indoles: A Simple, Environmentally Benign Approach to Synthesis of 3,3'-Bis(indolyl)methanes

Vikas D. Kadu^a*, Sankala Naga Chandrudu^b, Mahesh G. Hublikar^a, Dattatraya G. Raut^a, Raghunath B. Bhosale^a

^aSchool of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur- 413255, Maharashtra (India)

^bDepartment of Chemistry, College of Engineering, Rayalseema University, Kurnool-518002, Andhrapradesh (India)

*Corresponding Author:

Vikas Dadabhau Kadu Organic Research Laboratory, School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University, Solapur- 413255, Maharashtra (India) Email: <u>vikaskadu1@gmail.com</u>

Table of Contents

1.1	Genef	RAL INFORMATION	.2
1.2	Genef	RAL PROCEDURE FOR THE SYNTHESIS OF BIS(INDOLYL)METHANES (3)	.3
1.3	CHARA	ACTERIZATION DATA OF PURE BIS(INDOLYL)METHANES PRODUCTS	.3
1	.3.1	Synthesis of 4-methyl-N-(4-methylbenzylidene)benzylamine (4)	.3
1.4	SPECT	RAL DATA	.4
1	.4.1	¹ H NMR of compound: 4	.4
1	.4.2	¹³ C NMR of compound: 4	.4
1	.4.3	DEPT of compound: 4	.5
1	.4.4	IR of compound: 3ca	.5
1	.4.5	¹ H NMR of compound: 3ca	.6
1	.4.6	¹³ C NMR of compound: 3ca	.6
1	.4.7	IR of compound: 3la	.7

Page 1 of 18

1.4.8	¹ H NMR of compound: 3la7
1.4.9	¹³ C NMR of compound: 3Ia8
1.4.10	HRMS of compound: 3Ia8
1.4.11	IR of compound: 3ma9
1.4.12	¹ H NMR of compound: 3ma9
1.4.13	¹³ C NMR of compound: 3ma10
1.4.14	HRMS of compound: 3ma10
1.4.15	IR of compound: 3ta11
1.4.16	¹ H NMR of compound: 3ta11
1.4.17	¹³ C NMR of compound: 3ta12
1.4.18	IR of compound: 3ua12
1.4.19	¹ H NMR of compound: 3ua13
1.4.20	¹³ C NMR of compound: 3ua
1.4.21	HRMS of compound: 3ua14
1.4.22	IR of compound: 3va14
1.4.23	¹ H NMR of compound: 3va15
1.4.24	¹³ C NMR of compound: 3va15
1.4.25	HRMS of compound: 3va16
1.4.26	IR of compound: 3wa16
1.4.27	¹ H NMR of compound: 3wa17
1.4.28	¹³ C NMR of compound: 3wa17
1.4.29	HRMS of compound: 3wa

Experimental Section

1.1 General Information

All reactions were carried out in oven-dried glassware using dry solvents under molecular oxygen atmosphere unless stated otherwise. Iron salts were purchased from Sigma-Aldrich and used as received. All other chemicals were used as received from commercial sources. Reactions were monitored by TLC on 0.25-mm Merck silica gel plates (60 F_{254}) using UV light for visualization. Column chromatography purification was performed using silica gel 100-200 mesh. Melting points were measured on a Büchi melting point apparatus and were uncorrected. IR spectra were recorded on a Spectrum FT-IR spectrophotometer. NMR spectra were recorded on a spectrometer Brucker 400 MHz (¹H at 400 MHz, ¹³C at 100 MHz), using DMSO-*d*₆ or

 $CDCl_3$ as the solvent with TMS as the internal standard at room temperature. Mass spectra were recorded on a 6530 Accurate-Mass Q-TOF LC/MS using Agilent Technologies.

1.2 General procedure for the synthesis of bis(indolyl)methanes (3)

To the 25 mL round bottom flask were added benzylamine **1** (1.1 mmol), indole **2** (2.0 mmol), AcOH (10 mol %), and dry chlorobenzene (2 mL). The round bottom flask was equipped with an O_2 balloon, and the reaction mixture was stirred at 110 °C until complete consumption of indole **2**, as monitored by TLC. After the reaction was finished, the reaction mixture cooled to room temperature, diluted with CH₂Cl₂ (10 mL), and washed with water (2 x 10 mL). The organic extract was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography using hexane/ethyl acetate mixture to afford the corresponding bis(indolyl)methane products **3**.

1.3 Characterization data of pure bis(indolyl)methanes products

1.3.1 Synthesis of 4-methyl-*N*-(4-methylbenzylidene)benzylamine (4)

To the 25 mL round bottom flask were added 4-methylbenzylamine (1a) (350 mg, 2.89 mmol), AcOH (10 mol %), and dry chlorobenzene (2 mL). The round bottom flask was equipped with O_2 balloon, and the reaction mixture was stirred at 110 °C for 3.4 h. The reaction mixture was cooled to room temperature, and adsorbed on basic alumina. It was purified by column chromatography over basic alumina using hexane/ethyl acetate (9:1) mixture as eluent to afford 4-methyl-*N*-(4-methylbenzylidene)benzylamine (4) (232 mg, 72 % yield) as pale yellow solid.

IR (cm⁻¹): 3022, 2923, 2853, 1646, 1514, 1174, 1021, 811, 711; ¹H NMR (400 MHz, CDCl₃): δ 8.24 (s, 1H), 7.07–7.26 (m, 8H, ArH), 4.5 (d, *J* = 5.6 Hz, 2H), 2.35 (s, 3H), 2.34 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 160.91, 137.47, 134.51, 129.58, 129.45, 129.28, 129.23, 127.83, 126.94, 41.97, 21.09 ppm; ¹³C NMR DEPT-135 (100 MHz, CDCl₃): 160.93 (=CH, up), 129.58, 129.45, 127.83, 126.94, 41.97 (CH₂, down), 21.09 (2xCH₃, up) ppm.

1.4 Spectral data

Page 4 of 18

1.4.4 IR of compound: 3ca

1.4.5 ¹H NMR of compound: 3ca

Page 6 of 18

1.4.7 IR of compound: 3la

Fri Aug 10 15:33:54 2018 (GMT+05:30)

1.4.8 ¹H NMR of compound: 3la

Page 7 of 18

1.4.9 ¹³C NMR of compound: 3la

1.4.10 HRMS of compound: 3la

MS Spectrum

MS	Sp	ectr	um	Peak	Lis	

m/z	z	Abund
258.0534	1	5952729.5
259.0534	1	780950.06
259.0731		566914.69
260.0501	1	2037784.13
344.1242	-	1423508.13
345.1333	1	720158.81
373.0977		2011433.63
374.1039	1	2294657.25
375.1063	1	797636.19
376.1078	1	656586.44

Page 8 of 18

1.4.11 IR of compound: 3ma

Fri Aug 10 15:34:21 2018 (GMT+05:30)

Dr.Makarand Kulkarni

1.4.12 ¹H NMR of compound: 3ma

Page 9 of 18

1.4.13 ¹³C NMR of compound: 3ma

1.4.14 HRMS of compound: 3ma

Page 10 of 18

1.4.15 IR of compound: 3ta

1.4.16 ¹H NMR of compound: 3ta

Page 11 of 18

1.4.17 ¹³C NMR of compound: 3ta

1.4.18 IR of compound: 3ua

Page 12 of 18

1.4.19 ¹H NMR of compound: 3ua

Page 13 of 18

1.4.21 HRMS of compound: 3ua

1.4.22 IR of compound: 3va

1.4.23 ¹H NMR of compound: 3va

Page 15 of 18

1.4.25 HRMS of compound: 3va

m/z	z	Abund	Ion
533.1752	1	1035.1	(M+H)+
534.1848	1	408.16	(M+H)+
MS Spectrum			

1.4.26 IR of compound: 3wa

Page 16 of 18

1.4.27 ¹H NMR of compound: 3wa

Page 17 of 18

1.4.29 HRMS of compound: 3wa

