## **Supplementary Information**

## Compressive behavior and electronic properties of ammonia ice: a firstprinciples study

Xueke Yu, Xue Jiang, Yan Su\*, Jijun Zhao

Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China

\*E-mail: <u>su.yan@dlut.edu.cn</u>

**Table S1.** Lattice constant (a, b, c), bond lengths of covalent  $(d_{N-H})$  and hydrogen  $(d_{N-H})$  bonds and H–N–H angle ( $\theta$ ) in  $P2_12_12_1$ ,  $Pca2_1$ ,  $P2_1/m$  and Pnma phases under various pressures P (GPa).  $Q_N$  and BO respect the average Mulliken charge on nitrogen and bond order along N–H bonds, respectively.

| Structure          | P<br>(GPa) | a (Å) | b (Å) | c (Å) | $d_{\rm N-H}$ | $d_{\rm N-HN}$ | $	heta\left(^{\circ} ight)$ | $Q_N(e)$ | BO           |
|--------------------|------------|-------|-------|-------|---------------|----------------|-----------------------------|----------|--------------|
|                    | (UFa)      | - 12  |       | 0     | (A)           | (A)            | 106.00                      |          | - <b>-</b> - |
|                    | 0          | 3.43  | 5.58  | 5.78  | 1.03          | 2.35           | 106.20                      | -1.10    | 0.70         |
| $P2_{1}2_{1}2_{1}$ | 30         | 2.82  | 4.68  | 5.00  | 1.02          | 1.87           | 106.80                      | -0.96    | 0.80         |
|                    | 100        | 2.57  | 4.22  | 4.48  | 1.01          | 1.56           | 107.83                      | -0.86    | 0.88         |
|                    | 0          | 13.58 | 4.17  | 4.50  | 1.03          | 2.26           | 105.68                      | -1.11    | 0.68         |
| $Pca2_1$           | 40         | 9.49  | 2.83  | 4.43  | 1.04          | 1.68           | 103.94                      | -0.90    | 0.79         |
|                    | 100        | 8.93  | 2.57  | 4.13  | 1.03          | 1.52           | 104.00                      | -0.84    | 0.84         |
|                    | 0          | 4.60  | 4.12  | 5.24  | 1.13          | 1.87           | 105.14                      | -1.00    | 0.51         |
| $P2_1/m$           | 40         | 2.87  | 4.36  | 4.69  | 1.11          | 1.72           | 102.71                      | -0.89    | 0.71         |
|                    | 100        | 2.60  | 4.12  | 4.38  | 1.08          | 1.55           | 103.44                      | -0.83    | 0.79         |
|                    | 0          | 5.93  | 4.74  | 4.43  | 1.03          | 2.25           | 106.47                      | -1.12    | 0.69         |
| Pnma               | 40         | 4.60  | 4.59  | 2.93  | 1.02          | 1.78           | 106.21                      | -0.94    | 0.81         |
|                    | 100        | 4.32  | 4.25  | 2.64  | 1.01          | 1.62           | 106.89                      | -0.86    | 0.85         |

| P (GPa) | atom | $Q_{N}\left( e ight)$ |
|---------|------|-----------------------|
| 0       | Н    | 0.08                  |
| 0       | Ν    | -0.25                 |
| 5       | Н    | 0.08                  |
| 5       | Ν    | -0.24                 |
| 12      | Н    | 0.08                  |
| 15      | Ν    | -0.23                 |
| 100     | Н    | 0.07                  |
| 100     | Ν    | -0.20                 |
| 500     | Н    | 0.06                  |
| 500     | Ν    | -0.17                 |

**Table S2.** The Hirshfeld charge analysis of  $P2_13$  phase of ammonia ice under 0, 5, 13, 100, and 500 GPa.

| P/GPa | group             | atom           | $CT_1/e$ | $CT_2/e$ |
|-------|-------------------|----------------|----------|----------|
|       |                   | $H_1$          | 0.11     |          |
|       | $\mathrm{NH_4^+}$ | $H_2$          | 0.07     | 0.18     |
| 0     |                   | $N_1$          | -0.18    |          |
| 0     |                   | H9             | 0.06     |          |
|       | $\rm NH_2^-$      | $H_{10}$       | 0.06     | -0.18    |
|       |                   | $N_3$          | -0.30    |          |
|       |                   | $H_1$          | 0.11     |          |
|       | $\mathrm{NH_4^+}$ | $H_2$          | 0.07     | 0.18     |
| 5     |                   | $N_1$          | -0.18    |          |
| 3     |                   | H9             | 0.06     |          |
|       | $\rm NH_2^-$      | $H_{10}$       | 0.05     | -0.18    |
|       |                   | $N_3$          | -0.30    |          |
|       |                   | $H_1$          | 0.10     |          |
|       | $\mathrm{NH_4^+}$ | $H_2$          | 0.07     | 0.19     |
| 15    |                   | $N_1$          | -0.15    |          |
| 15    |                   | H9             | 0.05     |          |
|       | $\rm NH_2^-$      | $H_{10}$       | 0.05     | -0.20    |
|       |                   | $N_3$          | -0.30    |          |
|       |                   | $H_1$          | 0.07     |          |
|       | $\mathrm{NH_4^+}$ | $H_2$          | 0.07     | 0.12     |
| 100   |                   | $N_1$          | -0.16    |          |
| 100   |                   | H9             | 0.06     |          |
|       | $\rm NH_2^-$      | $H_{10}$       | 0.06     | -0.11    |
|       |                   | $N_3$          | -0.23    |          |
|       |                   | $H_1$          | 0.06     |          |
|       | $\mathrm{NH_4^+}$ | $H_2$          | 0.06     | 0.05     |
| 500   |                   | $N_1$          | -0.19    |          |
| 300   |                   | H <sub>9</sub> | 0.06     |          |
|       | $\rm NH_2^-$      | $H_{10}$       | 0.06     | -0.06    |
|       |                   | $N_3$          | -0.18    |          |

**Table S3.** The Hirshfeld charge analysis of *P*ma2 phase of ammonia ice under 0, 5, 15,100, and 500 GPa.



**Fig. S1.** The charge density distribution in (111) plane of  $P2_12_12_1$ ,  $Pca2_1$ ,  $P2_1/m$  and Pnma phases under 0,  $P_c$ , 100 GPa. ( $P_c$ : the critical pressure of the maximum band gap values)



**Fig. S2.** The density of states (DOS) of (a)  $P2_13$  phase and (b) Pma2 phase in the range of 5 – 10 eV under various pressures (0, 5,  $P_c$ , 100 and 500 GPa).



**Fig. S3.** The density of states (DOS) of (a)  $P2_12_12_1$  and (b) *P*nma molecular phases under the various pressure.



**Fig. S4.** The DOS of (a)  $Pca2_1$  and (b)  $P2_1/m$  ionic phases under the various pressure.



**Fig. S5.** The band structures of (a)  $P2_12_12_1$  and (b) *P*nma molecular phases under 0 GPa, critical pressure (P<sub>c</sub>: 30, 20 and 40 GPa) and 100 GPa.



**Fig. S6.** The band structure of (a)  $Pca2_1$  and (b)  $P2_1/m$  ionic phases under 0 GPa, critical pressure ( $P_c$ : 40 and 40 GPa) and 100 GPa.